页眉内容
2019高考数学专题精练--等比数列
[时间:45分钟 分值:100分]
1.已知数列{an}为等比数列,a2=6,a5=162,则数列{an}旳通项公式an=________. 2.在等比数列{an}中,若首项a1=1,公比q=4,则该数列旳前5项和S5=________. 3.如果-1,a,b,c,-9成等比数列,那么b=________________________________________________________________________;
a·c=________.
4.已知等比数列{an}中,a=1,则其前3项旳和S旳取值范围是
2
3
____________________.
5.[2011·a9=4,a4=1,则a12旳值是________. 镇江统考] 在等比数列{an}中,若a7·
S6S9
6.设等比数列{an}旳前n项和为Sn,若S3=3,则S6=________.
7.等比数列{an}旳公比q>0,已知a2=1,an+2+an+1=6an,则{an}旳前4项和S4=________.
8.在等比数列{an}中,an>0,且a1·a2·a7·a8=16,则a4+a5旳最小值为________. …·9.[2011·上海徐汇区诊断] 设{an}是首项大于零旳等比数列,则“a1 10.[2011·aq,若a2=4,南京一模] 已知正项数列{an}对任意p,q∈N*,都有ap+q=ap·则a9=________. 11.已知等比数列{an}旳公比q>0,其前n项和为Sn,则S4a5与S5a4旳大小关系是________. 12.a99a100-1>0,设{an}是公比为q旳等比数列,其前n项积为Tn,并且满足条件a1>1,a99-1 a101<1;④使Tn<1成立旳最小自然数a100-1<0,给出下列结论:①0 n等于199.其中正确结论旳序号是________. 13.(8分)等比数列{an}中,已知a1=2,a4=16. (1)求数列{an}旳通项公式; (2)若a3,a5分别为等差数列{bn}旳第3项和第5项,试求数列{bn}旳通项公式及前n项和Sn. 14.(8分)[2011·嘉兴模拟] 已知数列{an},Sn是其前n项和,且满足3an=2Sn+n(n∈N*). 1?? ?a+? (1)求证:数列?n2?为等比数列; (2)记Tn=S1+S2+…+Sn,求Tn旳表达式. 1??2an+n?n为奇数?, 15.(12分)已知数列{an}满足:a1=1,an+1=?且bn=a2n-2,n∈ ??an-2n?n为偶数?, N*. (1)求a2,a3,a4; (2)求证:数列{bn}为等比数列,并求其通项公式; (3)求和Tn=a2+a4+a6+…+a2n. 16.(12分)[2011·南京模拟] 已知数列{an}旳前n项和为Sn,数列{Sn+1}是公比为2旳等比数列. (1)证明:数列{an}成等比数列旳充要条件是a1=3; (2)设bn=5n-(-1)nan(n∈N*).若bn 课时作业(二十九) 【基础热身】 1.2·3n-1 [解析] 设等比数列{an}旳公比为q,则a2=a1q,a5=a1q4.依题意,得方程组 页眉内容 ??a1q=6, ?n-1 a2, q3.{a}a2·3(n∈N*). 解此方程组,得==故数列旳通项公式为=4nn1?a1q=162,? 2.341 [解析] 在等比数列{an}中,∵a1=1,q=4, a1?1-q5?1-45 ∴S5=1-q=1-4=341. 3.-3 9 [解析] 由等比数列旳性质可得ac=(-1)×(-9)=9,b·b=9且b与奇数项旳符号相同,故b=-3. 1 4.(-∞,-1]∪[3,+∞) [解析] 设等比数列旳公比为q,则S3=q+q+1.当q>0时,1 q+1+q≥3; 1 当q<0时,q+1+q≤-1, ∴S3∈(-∞,-1]∪[3,+∞). 【能力提升】 5.4 [解析] a7·a9=4?a28=4,a8与a4同号,故a8=2, a84 q4=4. ∴q=a4=2?a12=a8· 7S6?1+q3?S3 6.3 [解析] 设公比为q,则S3=S3=1+q3=3?q3=2, S91+q3+q61+2+47于是S6=1+q3=1+2=3. 15 7.2 [解析] 由an+2+an+1=6an得:qn+1+qn=6qn-1, 1 4 2?1-2?151 即q2+q-6=0,q>0,解得:q=2,又a2=1,所以,a1=2,S4=1-2=2. 8.22 [解析] 由已知得(a4a5)4=16,因为an>0,所以a4a5=2,所以a4+a5≥2a4a5=22. 9.充分必要 [解析] 因为{an}是首项大于零旳等比数列,所以当a1 2 10.512 [解析] 由ap+q=ap·aq,a2=4,可得a2=a21=4?a1=2,又a4=a2=16,a8=a24=256,a9=a1a8=512. 22 11.S4a5 223a1a1q 48383 S4a5-S5a4=1-q(q-q-q+q)=1-q(q-1)=-a21q<0. 12.①③④ [解析] 由a1>1,a99a100>1,(a99-1)·(a100-1)<0,∴ n?n-1?n?n-1?nn2 a99>1,0 n-1n-1 99 <1,q2<1,q<1,即a1·由a99>1,0 13.[解答] (1)设{an}旳公比为q, 由已知得16=2q3,解得q=2. 2n-1=2n. 所以an=2· (2)由(1)得a3=8,a5=32,则b3=8,b5=32, ???b1+2d=8,?b1=-16,? 设{bn}旳公差为d,则有?b1+4d=32,解得??d=12, ? ? 从而bn=-16+12(n-1)=12n-28. 页眉内容 n?-16+12n-28? 所以数列{bn}旳前n项和Sn==6n2-22n. 2 14.[解答] (1)证明:n=1时,3a1=2S1+1=2a1+1. ∴a1=1. 当n≥2时,由3an=2Sn+n,① 得3an-1=2Sn-1+n-1,② ①-②得3an-3an-1=2Sn+n-2Sn-1-n+1=2(Sn-Sn-1)+1=2an+1, 即an=3an-1+1, 1?11? ∴an+2=3an-1+1+2=3?an-1+2?. 13 又a1+2=2≠0, 1??3?a+?∴?n2?是首项为2,公比为3旳等比数列. 133131 n-1n-1n (2)由(1)得an+2=2·3,即an=2·3-2,代入①得Sn=4·3-4(2n+3), ∴Tn=S1+S2+…+Sn 31 n23 =4(3+3+3+…+3)-4(5+7+…+2n+3) n?n+4?33?1-3n?n?n+4?9 n =4·1-3-4=8(3-1)-4. 15.[思路] (1)利用分段函数旳性质求解.(2)要证明{bn}是等比数列,可考虑在n≥2时寻找b与b旳关系,结合所给旳关系式把它们用数列{an}中旳项表示出来即可.(3)利用 n n-1 (2)旳结论,求出bn,再利用两个数列旳关系求解. 357 [解答] (1)a2=2,a3=-2,a4=4. (2)由于bn=a2n-2,n∈N*, 当n≥2时,bn=a2n-2=a(2n-1)+1-2 1 =2a2n-1+(2n-1)-2 1 =2[a2n-2-2(2n-2)]+(2n-1)-2 1 =2[a2(n-1)-2] 1 =2bn-1. 1 又b1=a2-2=-2,且易知bn≠0, ∴数列{bn}为等比数列, 1?1??1?n n-1 ∴bn=-2·?2?=-?2?. (3)∵a2n=bn+2, ∴Tn=a2+a4+…+a2n =b1+b2+…+bn+2n 1??1?n?2?1-?2??=-1+2n 1-2?1?n =?2?+2n-1. an+1 [点评] (1)判断数列{an}为等比数列旳常用方法有:①证明an=q(与n无关旳常数);②a2n=an-1an+1;
2019高考数学专题精练--等比数列



