=r2,这并不是说不涉及圆与直线相切这一位置关系.与直线相切这一位置关系的判断可以有两种方法,一种是利用圆心到直线的距离等于半径长;另一种是利用它们的方程组成的方程组只有一组实数解.
2.关注重要数学思想方法的教学
重要的数学思想方法不怕重复.《普通高中数学课程标准(实验)》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法.在教学中应自始至终强化这一思想方法,这是解析几何的特点.教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,不应割断它们之间的联系,只强调其一方面.
3.关注学生的动手操作和主动参与
学习方式的转变是课程改革的重要目标之一.教学中,注意提供充分的数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法.例如,判断直线与圆、圆与圆的位置关系以及它们的简单应用,探究点的轨迹等内容,可以先让学生画一画、想一想,然后进行代数论证.“观察”“思考”“探究”等栏目设置目的之一就是想让学生参与到数学活动中来.
4.关注信息技术的应用
平面解析几何是一门典型的数与形结合的学科,信息技术在加强几何直观,促使数与形结合方面有着特殊的作用.借助信息技术,可以形象、直观地帮助学生认识所研究的曲线.在动态演示中,观察曲线的性质,在直观了解的基础上,寻求形成这些性质的原因以及代数表示.通过对方程的研究,了解曲线与曲线的关系时,运用信息技术,可以进一步验证得到的结果,为抽象的认识增添了形象的支持.在探究点的轨迹时,可以借助信息技术,探究轨迹的形状等等.