好文档 - 专业文书写作范文服务资料分享网站

2014年数学二真题及问题详解解析汇报

天下 分享 时间: 加入收藏 我要投稿 点赞

实用文档

已知函数y?y?x?满足微分方程x?yy??1?y?,且y?2??0,求y?x?的极大值与极小

22值.

【解析】 由x?yy??1?y?,得

(y?1)y??1?x………………………………………………………① 此时上面方程为变量可分离方程,解的通解为

2222131y?y?x?x3?c 332 由y(2)?0得c?

31?x2 又由①可得 y?(x)?2

y?1 当y?(x)?0时,x??1,且有:

x??1,y?(x)?0?1?x?1,y?(x)?0

x?1,y?(x)?0所以y(x)在x??1处取得极小值,在x?1处取得极大值 y(?1)?0,y(1)?1

即:y(x)的极大值为1,极小值为0.

(17)(本题满分10分)

设平面区域D???x,y?1?x2?y2?4,x?0,y?0,计算??D?xsin?x2?y2x?y??dxdy.

【解析】D关于y?x对称,满足轮换对称性,则:

xsin(?x2?y2)ysin(?x2?y2)dxdy???dxdy ??x?yx?yDDxsin(?x2?y2)1?xsin(?x2?y2)ysin(?x2?y2)??I???dxdy??????dxdy

x?y2x?yx?y?DD????1sin(?x2?y2)dxdy ??2D标准

实用文档

21?2??d??sin?r?rdr120

2?1?(?)?rdcos?r4?121?2??cos?r?r|1??cos?rdr?

?1??4?1?12????2?1?sin?r|1 ?4???3??

4(18)(本题满分10分)

?2z?2zx2x设函数f(u)具有二阶连续导数,z?f(ecosy)满足2?2?(4z?ecosy)e,若

?x?yxf(0)?0,f'(0)?0,求f(u)的表达式.

【解析】由z?fecosy,?x??z?z?f?(excosy)?excosy,?f?(excosy)???exsiny? ?x?y?2z?f??(excosy)?excosy?excosy?f?(excosy)?excosy, 2?x?2z?f??(excosy)???exsiny????exsiny??f?(excosy)???excosy? 2?y?2z?2zx2x+?4z?ecosye由 ,代入得, ???x2?y2f???excosy??e2x?[4f?excosy??excosy]e2x

f???excosy??4f?excosy??excosy,

令ecosy=t,得f???t??4f?t??t

x特征方程 ??4?0,???2 得齐次方程通解y?c1e2t?c2e?2t

2标准

实用文档

11设特解y*?at?b,代入方程得a??4,b?0,特解y*??4t 则原方程通解为y=f?t??c2tc?2t11e?2e?4t

由f?0??0,f'?0??0,得c111?16,c2??16, 则

y=f?u??1e2u1116?16e?2u?4u.

(19)(本题满分10分)

设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0??xag(t)dt?x?a,x?[a,b],

(II)

?a??bag(t)dtaf(x)dx??baf(x)g(x)dx.

【解析】(I)由积分中值定理

?xag?t?dt?g????x?a?,??[a,x]

Q0?g?x??1,?0?g????x?a???x?a?

?0??xag?t?dt??x?a?

(II)直接由0?g?x??1,得到

0??xg?t?dt??xaa1dt=?x?a?

(II)令F?u???ua??uag?t?dtaf?x?g?x?dx??f?x?dx

F'?u??f?u?g?u??f?aa??uag?t?dt??g?u??g?u????f?u??f?a??uag?t?dt??

??由(I)知0??uag?t?dt??u?a? ?a?a??uag?t?dt?u

又由于f?x?单增,所以f?u??f?a??uag?t?dt??0

?F'?u??0,?F?u?单调不减,?F?u??F?a??0

取u?b,得F?b??0,即(II)成立.

标准

0?g(x)?1,证明:(I)

实用文档

(20)(本题满分11分)

设函数f(x)?x,x??0,1?,定义函数列 1?xf1(x)?f(x),f2(x)?f(f1(x)),L,fn(x)?f(fn?1(x)),L,记Sn是由曲线y?fn(x),直线x?1及x轴所围成平面图形的面积,求极限limnSn.

n??【解析】f1(x)?xxxx,f2(x)?,f3(x)?,L,fn(x)?, 1?x1?2x1?3x1?nx11x??111xnndx ?Sn??fn(x)dx??dx??001?nx01?nx1111111??1dx??dx??2ln(1?nx)10 n0n01?nxnn11??2ln(1?n) nnln(1?n)ln(1?x)1?limnSn?1?lim?1?lim?1?lim?1?0?1 n??n??x??x??nx1?x?f?2(y?1),且f(y,y)?(y?1)2?(2?y)lny,求曲线?y(21)(本题满分11分) 已知函数f(x,y)满足

f(x,y)?0所围成的图形绕直线y??1旋转所成的旋转体的体积.

【解析】因为

?f?2(y?1),所以f(x,y)?y2?2y??(x),其中?(x)为待定函数. ?y2又因为f(y,y)?(y?1)??2?y?lny,则?(y)?1??2?y?lny,从而

f(x,y)?y2?2y?1??2?x?lnx?(y?1)2??2?x?lnx.

令f(x,y)?0,可得(y?1)??2?x?lnx,当y??1时,x?1或x?2,从而所求的体积为

2V??????2121?y?1?dx???1?2?x?lnxdx22?x2?lnxd?2x??2??标准

实用文档

2??x2?x????lnx(2x?)?????2??dx12?12???2

??2ln2??(2x?(22)(本题满分11分)

x255??)1??2ln2??????2ln2??.444??2?1?23?4??? 设矩阵A?01?11,E为三阶单位矩阵.

???120?3???(I)求方程组Ax?0的一个基础解系; (II)求满足AB?E的所有矩阵B.

【解析】

?1?23?4100??1?23?4100????01?11010?01?11010?AE??????? ?120?3001??04?31?101?????6?1??1?23?4100??10012????10?010?2?1?31 ?01?110????,

?001?3?1?41??001?3?1?41????? (I)Ax?0的基础解系为????1,2,3,1? (II)e1??1,0,0?,e2??0,1,0?,e3??0,0,1?

TTTTAx?e1的通解为x?k1???2,?1,?1,0???2?k1,?1?2k1,?1?3k1,k1? Ax?e2的通解为x?k2???6,?3,?4,0???6?k2,?3?2k2,?4?3k2,k2? Ax?e3的通解为x?k3????1,1,1,0????1?k3,1?2k3,1?3k3,k3?

TTTTTT6?k2?1?k3??2?k1???1?2k?3?2k1?2k123??B????1?3k1?4?3k21?3k3????k?kk123??(23)(本题满分11分)

(k1,k2,k3为任意常数)

?11L?11L? 证明n阶矩阵

?MMM??11L标准

1??0??1??0与??MM??1??0L01??L02?相似. ?MMM?L0n?实用文档

?1??1?????M2【解析】已知A????1LL1?,B=???00L?M??M??????1??n?则A的特征值为n,0(n?1重).

1?,

A属于??n的特征向量为(1,1,L,1)T;r(A)?1,故Ax?0基础解系有n?1个线性无关

的解向量,即A属于

??0有n?1个线性无关的特征向量;故A相似于对角阵

???. ??0?B的特征值为n,0(n?1重),同理B属于??0有n?1个线性无关的特征向量,故B相似于对角阵?.

由相似关系的传递性,A相似于B.

?n?0?=??O??标准

2014年数学二真题及问题详解解析汇报

实用文档已知函数y?y?x?满足微分方程x?yy??1?y?,且y?2??0,求y?x?的极大值与极小22值.【解析】由x?yy??1?y?,得(y?1)y??1?x………………………………………………………①此时上面方程为变量可分离方程,解的通解为2222131y?y?x?x3?c332
推荐度:
点击下载文档文档为doc格式
0g45s8e1c07f1wl0k4bu3bj0w6iihw013j0
领取福利

微信扫码领取福利

微信扫码分享