好文档 - 专业文书写作范文服务资料分享网站

高三数学一轮复习第1讲集合教案

天下 分享 时间: 加入收藏 我要投稿 点赞

集 合

1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 课标2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; 要 (2)在具体情境中,了解全集与空集的含义; 求 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用命题走 几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2017年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解向 答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 教学多媒体 准备 要点精讲: 1.集合:某些指定的对象集在一起成为集合。 有的学生对整(1)集合中的对象称元素,若a是集合A的元素,记作a?A;若b不是集合A的元素,数包括记作b?A; (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 教列举法:把集合中的元素一一列举出来,写在大括号内; 学描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 过具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,程 再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意, 一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N; 正整数集,记作N或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系: (1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A?B(或A?B); 集合相等:构成两个集合的元素完全一样。若A?B且B?A,则称A等于B,记作A=B;若A?B且A≠B,则称A是B的真子集,记作A B; *哪些数还不太清楚,后面还要通过具体题目增强认识。 (2)简单性质:1)A?A;2)??A;3)若A?B,B?C,则A?C;4)若集合A是n个元素的集合,则集合A有2个子集(其中2-1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U; (2)若S是一个集合,A?S,则,CS={x|x?S且x?A}称S中子集A的补集; (3)简单性质:1)CS(CS)=A;2)CSS=?,CS?=S。 4.交集与并集: (1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集A?B?{x|x?A且x?B}。 (2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。并集A?B?{x|x?A或x?B}。 注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 5.集合的简单性质: (1)A?A?A,A????,A?B?B?A; (2)A???A,A?B?B?A; (3)(A?B)?(A?B); (4)A?B?A?B?A;A?B?A?B?B; (5)CS(A∩B)=(CSA)∪(CSB),CS(A∪B)=(CSA)∩(CSB)。 典例解析: 1.(2012·大纲全国卷)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( ) A.A?B B.C?B C.D?C D.A?D nn 解析:选B 选项A错,应当是B?A.选项B对,正方形一定是矩形,但矩形不一定是正方形.选项C错,正方形一定是菱形,但菱形不一定是正方形.选项D错,应当是D?A. 2.(2012·浙江高考)设集合A={x|1<x<4},集合B={x|x-2x-3≤0},则A∩(?2

高三数学一轮复习第1讲集合教案

集合1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;课标2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;要(2)在具体情境中,了解全集与空集的含义;求3.集合的基本运算(1)理解两个集合
推荐度:
点击下载文档文档为doc格式
0g0ke2tik177xpo5846y5ap1c1kzfj00qdj
领取福利

微信扫码领取福利

微信扫码分享