良好环境,使其有充足的营养、水分和适宜的pH值,保证生物降解在土壤的各个层面上都能发生。
3.请列举几种强化微生物异位修复技术。
异位生物修复主要包括堆肥法、生物反应器处理、厌氧处理。
(1)堆肥法(composting)是处理固体废弃物的传统技术,被用于受石油、洗涤剂、多氯烃、农药等污染土壤的修复处理,取得了很好的处理效果。堆肥过程中,将受污染土壤与水(达到至少35%含水量)、营养物、泥炭、稻草和动物肥料混合后,使用机械或压气系统充氧,同时加石灰以调节pH。经过一段时间的发酵处理,大部分污染物被降解,标志着堆肥完成。经处理消除污染的土壤可返回原地或用于农业生产。堆肥法包括风道式堆肥处理、好气静态堆肥处理和机械堆肥处理。
(2)生物反应器处理(bioreactor)是把污染物移到反应器中完成微生物的代谢过程。这是一种很有价值和潜力的处理技术,适用于处理地表土及水体的污染。生物反应器包括土壤泥浆生物反应器(soil slurry bioreactor)和预制床反应器(prepared bed reactor)。
(3)厌氧处理对某些具有高氧化状态的污染物的降解,如三硝基甲苯、多氯取代化合物(PCBs等)等,比耗氧处理更为有效。但总的来说,在生物修复中好氧方法的使用要比厌氧方法广泛得多。主要原因是,严格的厌氧条件难于达到,厌氧过程中会产生一些毒性更大、更难降解的中间代谢产物。此外,厌氧发酵的终产物H2S和CH4也存在毒性和风险。
4.植物修复重金属的主要过程是什么?
根据其作用过程和机理,重金属污染土壤的植物修复技术可分为3种类型。 (1)植物提取:利用重金属超积累植物从土壤中吸取一种或几种重金属,并将其转移、储存到地上部分,随后收割地上部分并集中处理,连续种植这种植物,即可使土壤中重金属含量降低到可接受的水平。
所谓超积累植物(hyperaccumulator),是指对重金属的吸收量超过一般植物100倍以上的植物,超积累植物积累的Cr、Co、Ni、Cu、Pb含量一般在110mg/ kg(干重) 以上,积累的Mn、Zn含量一般在10mg/ kg(干重)以上。
超积累植物从根际吸收重金属,并将其转移和积累到地上部,这个过程中包括许多环节和调控位点:①跨根细胞质膜运输;②根皮层细胞中横向运输;③从根系的中柱薄壁细胞装载到木质部导管;④木质部中长途运输;⑤从木质部卸载到叶细胞(跨叶细胞膜运输);⑥跨叶细胞的液泡膜运输。在组织水平上,重金
属主要分布在表皮细胞、亚表皮细胞和表皮毛中;在细胞水平,重金属主要分布在质外体和液泡。
(2)植物稳定:利用耐重金属植物的根际的一些分泌物,增加土壤中有毒金属的稳定性,从而减少金属向作物的迁移,以及被淋滤到地下水或通过空气扩散进一步污染环境的可能性。其中包括沉淀、螯合、氧化还原等多种过程。
(3)植物挥发:利用植物的吸收、积累和挥发而减少土壤中一些挥发性污染物,即植物将污染物吸收到体内后将其转化为气态物质,释放到大气中,目前这方面研究最多的是类金属元素汞和非金属元素硒。
5.请说明臭氧与有机污染物反应的主要机理。
(1)臭氧分子的直接氧化反应
臭氧的分子结构呈三角形,中心氧原子与其它两个氧原子间的距离相等,在分子中有一个离域π键,臭氧分子的特殊结构使得它可以作为偶极试剂、亲电试剂和亲核试剂。与有机物的直接反应机理可以分为三类:
① 打开双键发生加成反应。
由于臭氧具有一种偶极结构,因此可以同有机物的不饱和键发生1,3偶极环加成反应,形成臭氧化的中间产物,并进一步分解形成醛、酮等羰基化合物和水。例如:
R1C=CR2+O3 → R1C(-OOH, G)+R2C=O
式中的G代表OH,OCH3,OC(O)CH3基 ② 亲电反应
亲电反应发生在分子中电子云密度高的点。对于芳香族化合物,当取代基为给电子基团(—OH,—NH2等)时,它与邻位或对位碳具有高的电子云密度,臭氧化反应发生在这些位置上;当取代基是吸电子基团(如—COOH,—NO2等)时,臭氧化反应比较弱,反应发生在这类取代基的间位碳原子上,进一步与臭氧反应则形成醌打开芳环,形成带有羰基的脂肪族化合物。
③ 亲核反应
亲核反应只发生在带有吸电子基团的碳原子上。分子臭氧的反应具有极强的选择性,仅限于同不饱和芳香族或脂肪族化合物或某些特殊基团发生反应。 (2)自由基的反应
臭氧在碱性环境等因素作用下,产生活泼的自由基,主要是羟基自由基(?OH),与污染物反应。臭氧在催化条件下易于分解形成?OH,土壤中天然存在的金属氧化物(α-Fe2O3),MnO2和Al2O3通常可以作为这种催化反应的活性位点。因此,臭氧气体能直接或通过在土壤中形成?OH迅速氧化土壤中的许多有害
污染物,使它们变得易于生物降解或者变成亲水性的无害化合物。进一步的研究发现,臭氧的氧化作用可以增大土壤中的小分子酸的比例和有机质的亲水性,并通过改变土壤颗粒的结构,促进有机污染物从土壤的脱附,从而提高有机物被生物降解的可能性。然而,臭氧的作用也会由于以下因素而受到限制,例如土壤有机质的竞争反应、土壤湿度、渗透性和pH值等。要提高臭氧的氧化速率和效率,必须采取其它措施促进臭氧的分解而产生活泼的羟基自由基。
6.写出Fe-PRB去除重金属的主要机理。
以零价铁为反应活性填料的PRB占整个技术的70%,它可以用于可还原有机污染物、可还原无机阴离子,如硫酸根及硝酸根,及重金属的去除。它的反应机理非常复杂,包括还原降解;还原沉淀(沉积);吸附;共沉淀;表面络合等化学过程。很多场合,即使是对一种污染物,也是多种过程同时起作用。零价铁PRB技术用于重金属去除最成熟的是对Cr、U和Tc的去除,有较多实际应用的工程实例,去除原理为还原沉淀。以Cr为例,生成的三价铬,形成氢氧化铬沉淀以及与铁离子形成氢氧化物共沉淀。
Fe0 + CrO42- + 4H2O = FexCr1-x(OH)3(x≤1) + 5 OH-
零价铁作用于重金属其它主要的机理为吸附和共沉淀,零价铁在水中放置过程中,逐渐发生腐蚀反应,生成多种形式的铁的(氢)氧化物沉淀,这些新生的沉淀具有高度反应活性,并具有巨大表面积,可以吸附截留水中的重金属离子。
从热力学角度出发,零价铁对重金属的去除还应包括还原沉积途径,如铜离子可与零价铁发生如下反应:Cu2+ + Fe0 = Fe2+ + Cu0。