数学重点、难点归纳辅导
第一部分
集合与映射
§1.集合
§2.映射与函数
本章教学要求:理解集合的概念与映射的概念,掌握实数集合集合的表示法,函数的表示法与函数的一些基本性质。
2 数列极限
§1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则
本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
第三章 函数极限与连续函数 §1.函数极限 §2.连续函数
§3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数
本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章 微 分 §1.微分和导数
§2.导数的意义和性质
§3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分
本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。
第五章 微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则
§3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例
§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。
第六章 不定积分
§1.不定积分的概念和运算法则 §2.换元积分法和分部积分法
§3.有理函数的不定积分及其应用
本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。
第七章 定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理
第七章 定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算
本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。
第八章 反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法
本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。
第九章 数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积
本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。
第十章 函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数
§4.函数的幂级数展开
§5.用多项式逼近连续函数
本章教学要求:掌握函数项级数(函数序列)一致收敛性概念,一致收敛性的判别法与一致收敛级数的性质,掌握幂级数的性质,会熟练展开函数为幂级数,了解函数的幂级数展开的重要应用。
第十一章 Euclid空间上的极限和连续 §1.Euclid空间上的基本定理
§2.多元连续函数 §3.连续函数的性质
本章教学要求:了解Euclid空间的拓扑性质,掌握多元函数的极限与连续性的概念,区分它们与一元函数对应概念之间的区别,掌握紧集上连续函数的性质。
第十二章 多元函数的微分学(§1—§5) §1.偏导数与全微分
§2. 多元复合函数的求导法则 §3.Taylor公式 §4.隐函数
§5.偏导数在几何中的应用
第十二章 多元函数的微分学(§6—§7) §6.无条件极值
§7.条件极值问题与Lagrange乘数法
本章教学要求:掌握多元函数的偏导数与微分的概念,区分它们与一元函数对应概念之间的区别,熟练掌握多元函数与隐函数的求导方法,掌握偏导数在几何上的应用,掌握求多元函数无条件极值与条件极值的方法。
第十三章 重积分 §1.有界闭区域上的重积分 §2.重积分的性质与计算 §3.重积分的变量代换 §4.反常重积分 §5.微分形式
本章教学要求:理解重积分的概念,掌握重积分与反常重积分的计算方法,会熟练应用变量代换法计算重积分,了解微分形式的引入在重积分变量代换的表示公式上的应用。
第十四章 曲线积分与曲面积分 §1.第一类曲线积分与第一类曲面积分 §2.第二类曲线积分与第二类曲面积分 §3.Green公式,Gauss公式和Stokes公式
§4.微分形式的外微分 §5.场论初步
本章教学要求:掌握二类曲线积分与二类曲面积分的概念与计算方法,掌握Green公式,Gauss公式和Stokes公式的意义与应用,理解外微分的引入在给出Green公式,Gauss公式和Stokes公式统一形式上的意义,对场论知识有一个初步的了解。
第十五章 含参变量积分 §1.含参变量的常义积分 §2.含参变量的反常积分
§3.Euler积分
本章教学要求:掌握含参变量常义积分的性质与计算,掌握含参变量反常积分一致收敛的概念,一致收敛的判别法,一致收敛反常积分的性质及其在积分计算中的应用,掌握Euler积分的计算。
第十六章 Fourier级数 §1.函数的Fourier级数展开 §2. Fourier级数的收敛判别法 §3. Fourier级数的性质
§4. Fourier变换和Fourier积分 §5.快速Fourier变换
本章教学要求:掌握周期函数的Fourier级数展开方法,掌握Fourier级数的收敛判别法与Fourier级数的性质,对Fourier变换与Fourier积分有一个初步的了解。
试题
一、解答下列各题
求极限 lim1、2、
tanx?tan2.x?2sinln(x?1)
求?(ex?1)3exdx.100x2?10x?1求极限lim3.2x??x?01.x?0.01x?0.001 3、
4、
设y?x2?sin2tdt,求y?.03x
2??x?x?1,x?1;设f(x)??求f(1?a)?f(1?a),其中a?0.2?2x?x,x?1?5、
6、
x2?1求极限lim.x?-1lnx
7、设 y?(3x?1)ln(3x?1),求y??
8、
求?12x31?x2 0dx.
x?13?2x设 y(x)?xe,求dy9、
.
2 求由方程x10、
23?y?a3(常数a?0)确定的隐函数
1123y?y(x)的微分dy. 设y?y(x)由x?(1?s2)2和y?(1?s2)2所确定,dy试求.dx11、
12、设y?y(x)由方程y?e16x?yx所确定,求y?
22若x?0,证明x?ln(1?x)?2x 13、
14、
求?dx 14x?x
.15、
求?2dxx4?x2 1.
16、
二、解答下列各题
求?dx.2(x?1)(x?1)
1、要做一个圆锥形漏斗,其母线长20cm,要使其体积最大,问其高应为多少?
2求曲线y?2?x与y?x所围成的平面图形的面积. 2、
23求曲线y?x和y?x在?0,1?上所围成的平面图形的面积. 3、
三、解答下列各题 四、解答下列各题
证明方程x5?7x?4在区间(1,2)内至少有一个实根.
第二部分 2 课程名称:微分几何 3 基本内容:三维空间中经典的曲线和曲面的理论。主要内容有:
曲线论,内容包括:曲线的切向量与弧长;主法向量与从法向量;曲率与扰率;Frenet标架与Frenet公式;曲线的局部结构;曲线论的基本定理;平面曲线的一些整体性质,如切线的旋转指标定理,凸曲线的几何性质,等周不等式,四顶点定理与Cauchy-Crofton公式;空间曲线的一些整体性质,如球面的Crofton公式,Fenchel定理与Fary-Milnor定理。
曲面的局部理论,内容包括:曲面的表示、切向量、法向量;旋转曲面、直纹面与可展曲面;曲面的第一基本形式与内蕴量;曲面的第二基本形式;曲面上的活动标架与基本公式;Weingarten变换与曲面的渐近线、共扼线;法曲率;主方向、主曲率与曲率线;Gauss曲率和平均曲率;曲面的局部结构;Gauss映照与第三基本形式;全脐曲面、极小
曲面与常Gauss曲率曲面;曲面论的基本定理;测地曲率与测地线;向量的平行移动。 基本要求:通过本课程的学习,学生应掌握曲线论与曲面论中的一些基本几何概念与研究微分几何的一些常用方法。以便为以后进一步学习、研究现代几何学打好基础;另一方面培养学生理论联系实际和分析问题解决问题的能力。
判定曲线y?(x?3)x在0,???上的凹凸性?