精品
第一章 随机过程基本概念
P39
1. 设随机过程X?t??Xcos?0t,???t???,其中?0是正常数,而X是标准正态变量。试求X?t?的一维概率分布。 解:
1 当cos?0t?0,?0t?k???2,即t?1?1?k????(k?z)时, ?0?2?X?t??0,则P?X?t??0??1. 2 当cos?0t?0,?0t?k???2,即t?1?1?k???(k?z)时, ?0?2??X~N?0,1?,?E?X??0,D?X??1. E??X?t????E?Xcos?0t??E?X?cos?0t?0.
22D??X?t????D?Xcos?0t??D?X?cos?0t?cos?0t.
?X?t?~N?0,cos2?0t?.
1e则f?x;t??2?cos?0t?x22cos2?0t.
2. 利用投掷一枚硬币的试验,定义随机过程为
?cos?t,出现正面X?t???
?2t,出现反面假定“出现正面”和“出现反面”的概率各为
1?1?。试确定X?t?的一维分布函数F?x;?2?2???1?。 和F?x;1?,以及二维分布函数F?x1,x2;,
可编辑
??12精品
解: ?1?X?? 0 ?2?pk
1 11 22?0,x?0??1????1?1??F?x;??P?X???x???,0?x?1
?2???2???2??1,x?1X?1? ?1 2 pk
随机矢量?X?1 21 2?0,x??1?1??F?x;1??P?X?1??x???,?1?x?2
?2??1,x?2????1?,X1?1?,?1,2?. ????的可能取值为?0,2???而P?X???1??1??1??1,?0,X1??1?PX?1,X1?2??????. ???????2??2??2??21???1????F?x1,x2;,1??P?X???x1,X?1??x2?
2????2???0,x1?0或x2??1??1??,0?x1?1且x2??1或x1?0且?1?x2?2 ?2??1,x1?1且x2?2
3. 设随机过程X?t?,???t???总共有三条样本曲线
??X?t,?1??1,X?t,?2??sint,X?t,?3??cost
且P??1??P??2??P??3??
可编辑
1。试求数学期望EX?t?和相关函数RX?t1,t2?。 3精品
解:
1111EX?t??1??sint??cost???1?sint?cost?.
3333RX?t1,t2??E??X?t1?X?t2???
111??1?1??sint1sint2??cost1cost2 3331??1?sint1sint2?cost1cost2? 31??1?cos?t1?t2???. 3?
4. 设随机过程X?t??e?Xt,(t?0),其中X是具有分布密度f?x?的随机变量。试求
X?t?的一维分布密度。
解:
X?t?的一维分布函数为:
1??F?x;t??P?X?t??x??P?e?Xt?x??P??Xt?lnx??P?X??lnx?
t??1???1??1?P?X??lnx??1?F??lnx?.
t???t?X具有分布密度f?x?, ?X?t?的一维分布密度为:
?????1??1?f?x;t???Fx;t????????t?x P40
5. 在题4中,假定随机变量X具有在区间?0,T?中的均匀分布。试求随机过程的数学期望EX?t?和自相关函数RX?t1,t2?。
可编辑
?1?1?1?f??lnx??f??lnx?. ?t?tx?t?精品
解:由题意得,随机变量X的密度函数为
?1?,0?x?T fX?x???T??0,其它由定义,
?Xt?tx?EX?t??E?e?e????0T11T1dx???e?txd??tx???e?txTTt0TtT0
??1?Tt1e?1???1?e?Tt?. (t?0) ?TtTt?X?t1?t2??Xt1?Xt2?? ??RX?t1,t2??E?XtXt?Ee?e?Ee?????12????????e?x?t1?t2??0TT?xt?t11?12?1dx??e?d??x?t1?t2?? ???0TT?t1?t2?T??1e?x?t1?t2?T?t1?t2?T0??1?e?T?t1?t2??1?
?T?t1?t2???
1?1?e?T?t1?t2??.
?T?t1?t2??9. 给定随机过程X?t?,???t???。对于任意一个数x,定义另一个随机过程
????1,X?t??xY?t???
??0,X?t??x试证:(两Y?t?的数学期望和相关函数分别为随机过程X?t?的一维分布和二维分布函数个自变量都取x)。
证明:设f1?x,t?和f2?x1,x2;t1,t2?分别为X?t?的一维和二维概率函数,则
mY?t??E??Y?t?????????y?t?f1?x,t?dx??????x??f1?x,t?dx?F1?x,t?.
RY?t1,t2??E??Y?t1?Y?t2???????x1?????????y1y2f2?x1,x2;,t1t2?dx1dx2
?x2f2?x1,x2;,t1t2?dx1dx2?F2?x1,x2;,t1t2?.
可编辑
精品
若考虑到对任意的t?T,Y?t?是离散型随机变量,则有
mY?t??E?t?. ?Y?t????1?P?Y?t??1??0?P?Y?t??0??P?X?t??x??F1?x,RY?t1,t2??E??Y?t1?Y?t2???
?1?1?P?Y?t1??1,Y?t2??1??1?0?P?Y?t1??1,Y?t2??0? ?0?1?P?Y?t1??0,Y?t2??1??0?0?P?Y?t1??0,Y?t2??0? ?P?X?t1??x1,X?t2??x2??F2?x1,x2;t1,t2?.
因此,Y?t?的数学期望和相关函数分别为随机过程X?t?的一维分布和二维分布函数。 P41
14. 设随机过程X?t??X?Yt,???t???,而随机矢量?X,Y?的协方差阵为
???12??,试求X?t?的协方差函数。 ?2????2?解:依定义,利用数学期望的性质可得
CX?t1,t2?
?E???X?Yt1???mX?mYt1??????X?Yt2???mX?mYt2??? ?E???X?mX???Yt1?mYt1??????X?mX???Yt2?mYt2???
?????E???X?mX??X?mX????E???X?mX?t2?Y?mY??? ?E??t1?Y?mY??X?mX????E??t1t2?Y?mY??Y?mY???
?CXX?t2CXY?t1CYX?t1t2CYY
2. ??12??t1?t2???t1t2?2
可编辑
随机过程作业题及参考答案(第一章)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)