2018年02月28日刘笑天的初中数学组卷
一.选择题(共12小题)
1.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于( )
A.2 B.3 C.4 D.无法确定
2.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )
A.有且只有1个
B.有且只有2个
C.组成∠E的角平分线
D.组成∠E的角平分线所在的直线(E点除外)
3.如图,AD是△ABC的角平分线,则AB:AC等于( )
A.BD:CD B.AD:CD C.BC:AD D.BC:AC
4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )
A.2个 B.3个 C.4个 D.5个
5.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等
腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
6.如图,已知△ABC的面积为12,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积是( )
A.10 B.8 C.6 D.4
7.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是( )
A. B. C. D.
8.如图,P为边长为2的正三角形内任意一点,过P点分别作三边的垂线,垂足分别为D,E,F,则PD+PE+PF的值为( )
A. B. C.2 D.2
9.如图,△ABC的面积为20,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是( )
A.5 B.10 C.15 D.20
10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连
接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为( )
A.2 B. C. D.3
二.填空题(共14小题)
11.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .
12.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= .
13.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .
14.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为 .
15.在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为 (用含a的式子表示).
16.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为 .
17.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.
18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .
19.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为 .
20.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2017次变换后,等边△ABC的顶点C的坐标为 .
21.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
22.如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 .
23.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为 .
24.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5的面积为= ,BD的长为 .
,则四边形ABCD
三.解答题(共4小题)
25.如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.
(1)若AD=2,求AB;
(2)若AB+CD=2+2,求AB.
26.如图:在矩形ABCD中,AD=60cm,CD=120cm,E、F为AB边的三等分点,以EF为边在
矩形内作等边三角形MEF,N为AB边上一点,EN=10cm;
请在矩形内找一点P,使△PMN为等边三角形(画出图形,并直接写出△PMF的面积).
27.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
28.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2
CM+
BN.
2018年02月28日刘笑天的初中数学组卷
参考答案与试题解析
一.选择题(共12小题)
1.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于( )