4.解:错误.
不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”
四、计算题
1.解:(1)图G是有向图: (2)邻接矩阵如下:
a2 ? a?3 ??010(D)??0A??10a4 ? ?a
5 ?a ?001
??01(3)图G是单侧连通图,也是弱连通图. 2.解:(1)图G如图十
v?1
v2 ? ? v5
? ?
v 3
v4 (2)邻接矩阵为 图十
??01100?10110? ????11011?
?01101????00110??(3)deg(v1)=2
deg(v2)=3 deg(v3)=4 deg(v4)=3
v?1 deg(v5)=2
v2 ? ? v5
(4)补图如图十一 v?
?3
v
4 图十一 3.解:(1)G的图形如图十二
(2)邻接矩阵: 图十二
6 000?010?000??,
001??000??
?00100??00110????11011? ??01101????00110??(3)v1,v2,v3,v4,v5结点的度数依次为1,2,4,3,2
(4)补图如图十三:
图十三 4.解:(1)G的图形表示如图十四:
图十四 (2)邻接矩阵:
?011?100??100??011??11101?11??11?
?01?10??(3)粗线表示最小的生成树,如图十五
如图十五 最小的生成树的权为1+1+2+3=7:
7
5.解:(1)最优二叉树如图十六所示: 方法(Huffman):从2,3,5,7,11,13,17 ,19,23,29,31中选2,3为最低层结点,并 从权数中删去,再添上他们的和数,即 5,5,7,11,13,17,19,23,29,31;
65 ? 160
? ? 95
42 ? ? 34 ? ? 53
31
再从5,5,7,11,13,17,19,23,29,31中选 ? 17 ? ? ? 24 ? ?
17 23 29 19 5,5为倒数第2层结点,并从上述数列中
? 10 ? ? ? 7 删去,再添上他们的和数,即7,10,11,13, 11 13 5 ? ? 17,19,23,29,31; 5 ? ? 然后,从7,10,11,13,17,19,23,29,31中 2 3
选7,10和11,13为倒数第3层结点,并从 如图十六 上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31; ……
(2)权值为:2?6+3?6+5?5+7?4+11?4+13?4+17?3+19?3+23?3+29?3+31?2 =12+18+25+28+44+52+51+57+69+87+62=505 6.解:最优二叉树如图十七
3 ? ? 1
7 ? ? ? 4 2 12 ? ? 5 ? 3
?
2
如图十七
它的权为:1?3+2?3+2?2+3?2+4?2=27
五、证明题
1.证明:用反证法.设G中的两个奇数度结点分别为u和v.假设u和v不连通,即它们之间无任何通路,则G至少有两个连通分支G1,G2,且u和v分别属于G1和G2,于是G1和G2各含有一个奇数度结点.这与定理3.1.2的推论矛盾.因而u和v一定是连通的.
2.证明:设G??V,E?,G??V,E??.则E?是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u?V,u在G和G中的度数之和等于u在
Kn中的度数.由于n是大于等于2的奇数,从而Kn的每个结点都是偶数度的(n?1 (?2)度),于是若u?V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.
3.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶
8
数.
又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图.
k故最少要加条边到图G才能使其成为欧拉图.
2
9