2024考研数学二真题及解析
2024考研数学二真题及解析
一、选择题:1~8 小题,每小题4 分,共32 分.下列每题给出的四个选项中,只有一个是符合题目要求的,请将所选项前的字母填在答题纸指定的位置上. ...
1(1) 若lim(e?ax?bx)x?1,则( )
x?0x22(A)a?(C)a?11,b??1 (B)a??,b??1 2211,b?1 (D)a??,b?122
ex?ax2?bx?1x2【答】应选(B).
1x22【解】lim(e?ax?bx)x?1,?左边?ex?0xx?0lim1ln(ex?ax2?bx)2,?ex?0lim?1,
122(?a)x?(1?b)x?o(x)e?ax?bx?1?lim?0?上式?lim2?0, 22x?0x?0xxx21?1?b?0???a????1??2,选B.
?a?0???2?b??1(2) 下列函数中,在x?0处不可导的是( ) (A)f?x??xsinx
(B)f?x??xsin
x (C)f?x??cosx (D)f?x??cos【答】选D.
【解】对于D:由定义得f?'(0)?lim?x?0x
cosx?1x??lim?x?01x2??1; x2f?'(0)?lim?x?0cosx?1x??lim?x?01x2?1,f'(0)?f'(0),所以不可导.
??x2?2?ax,x?1?1,x?0???1?x?0,若f(x)?g(x)在R上连续,(3) 设函数f(x)??, g(x)??x,1,x0??x?b,x0?则( ) (A)a?3,b?1
(B)a?3,b?2
2024考研数学二真题及解析
(C)a??3,b?1 (D)a??3,b?2 【答】选D
【解】分段点为x??1,x?0,当x??1时,f(x)?g(x)??1?2?ax?1?ax,当
?1?x?0时,f(x)?g(x)??1?x,当x?0时,f(x)?g(x)?1?x?b,综上知:?1?ax,x??1,f(x)?g(x)????1?x,?1?x?0,
??1?x?b,x?0.xlim??1?(f(x)?g(x))?1?a,xlim??1?(f(x)?g(x))??2,?a??3,
xlim(?0?f(x)?g(x))??1,lim(x?0?f(x)?g(x))?1?b,?b?2,选D. (4) 已知函数 f (x) 在[0,1]上二阶可导,且 ?10f?x?dx?0,则( )
(A)当f?(x)?0时,1(B)
f(2)?0
当f??(x)?0时,f(1(C)1
2)?0
1 当f?(x)?0时,f()?0 (D) 当f??(x)?0时, 2 f(2)?0
【答】选D
【解】对于选项A:取f(x)??x?12,f'(x)?0,但是f(12)?0, 对于选项B:取f(x)??(x?12)2?1,f''(x)?0,但是f(12)?0,
对于选项C:取f(x)??x?12,f'(x)?0,但是f(12)?0,选D.
?2??(5) 设M??2?1?x???1?x2dx,N??21?x2??xdx,K??2???1?cosx?dx,则( 2e2 (A)M?N?K
(B)M?K?N (C)K?M?N (D)K?N?M
【答】选C.
?【解】M??21?x2?2x???21?x2dx??2??dx??; 2??N??21?x?11?x11?x??21?xxdx?2e???xdx?2e??1exdx??1exdx, ??11?x??exdx?0,?11?x?1exdx??11?x?1ex2dx??111?1ex2dx?2??11dx?2) ,
2024考研数学二真题及解析
????21?x1exdx??211dx??2,?N??2??1dx?M;2?K??2??(1+cosx)dx??,?K?M?N.选C. 2
(6)
?02?x22?x2?1dx??x(1?xy)dy??10dx?x(1?xy)dy?( )
(A)
5 (B)5 (C)773 6
3
(D)
6
【答】应选(C) 22【解】
?0?1dx?2?x?x(1?xy)dy??1dx?2?x0x(1?xy)dy
D关于y轴对称
?原式=
??(1?xy)dxdy???dxdy?2??dxdy
DDD1?2?1dx?2?x210xdy?2?1170(2?x2?x)dx?2(2?3?2)?3,选C.
?110(7) 下列矩阵中与矩阵???011??相似的为( )
??001???11?1??10 (A) ??011??
(B) ??1???011??
?001????001???11?1? (C) ???010??
(D) ?10?1???010??001????001???
【答】选A.
【解】A~B,?E?A~E?B?r(E?A)?r(E?B)
各选项中:B:r(E?B)?1;C:r(E?B)?1;D:r(E?B)?1选A.
(8) 设A,B为n阶矩阵,记r(X)为矩阵X的秩, (X,Y)表示分块矩阵,则( (A) r?A,AB??r?A?
(B) r?A,BA??r?A?
(C) r?A,B??max?r?A?,r?B?? (D) r?A,B??r?AT,BT?
【答】应选(A).
)