好文档 - 专业文书写作范文服务资料分享网站

激光原理第二章答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

WORD资料可编辑

因此,只要选择小孔阑的边长满足0.7mm?2a?0.83mm即可实现TEM00模单模振荡。

8.试求出方形镜共焦腔面上TEM30模的节线位置,这些节线是等距分布的吗? 解:在厄米-高斯近似下,共焦腔面上的TEM30模的场分布可以写成

?2???(xL??/y?)v30(x,y)?C30H3?xe I??L????x2?y2(L?/?)22令X?2?/(L?)x,则I式可以写成

v30(x,y)?C30H3?X?e式中H3?X?为厄米多项式,其值为

?

H3?X??8X3-12X

由于厄米多项式的零点就是场的节点位置,于是令H3?X??0,得

X1?0;X2?3/2;X3??3/2 考虑到?0s?

L?/?,于是可以得到镜面上的节点位置

x1?0;x2?33?0s;x3???0s22所以,TEM30模在腔面上有三条节线,其x坐标位置分别在0和?3?0s/2处,节线之间位置是等间距分布的,其间距为3?0s/2;而沿y方向没有节线分布。 9. 求圆形镜共焦腔TEM20和TEM02模在镜面上光斑的节线位置。

解:在拉盖尔—高斯近似下,可以写成如下的形式

?mn?r,???Cmn???2r?n?2r??Lm?2?e?????0s???0s?2m?r22?0s?cosm? ??sinm?对于TEMmn,两个三角函数因子可以任意选择,但是当m为零时,只能选余弦,否则无意义

对于TEM20:?20?r,???C20??2r?2?2r???????L0??2?e?0s??0s?22?r22?0s?cos2? ??sin2??2r2并且L???2?0s20????1,代入上式,得到 ? 专业整理分享

WORD资料可编辑

?20?r,???C20???2r??e???0s?2?r22?0s?cos2?, ?sin2???2r?????e?0s?2?r22?0s取余弦项,根据题中所要求的结果,我们取?20?r,???C20?求出镜面上节线的位置。即

cos2??0,就能

cos2??0??1?

同理,对于TEM02,

?4,?2?3? 4?02?r,???C02??02?2r?0?2r??L2?2?e?????0s???0s?20?r22?0s?2r?2?C02L02???0s2???e??r22?0s

?2r2?4r22r4L???2???1??2??4,代入上式并使光波场为零,得到

0s0s?0s??02?r,???C02??02?2r?????0s?0?4r2r??1????2?4??e0s0s??24?r22?0s?0

?2r2?4r22r4显然,只要L?2??1?2?4?0即满足上式

????0s?0s?0s?镜面上节线圆的半径分别为:

r1?1?22?0s,r2?1??0s 2210. 今有一球面腔,R1?1.5m,R2??1m,L?80cm。试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。

解:该球面腔的g参数为

g1?1?L7?R115g2?1?L?1.8R2由此,g1g2?0.85,满足谐振腔的稳定性条件0?g1g2?1,因此,该腔为稳定腔。 由稳定腔与共焦腔等价条件

专业整理分享

WORD资料可编辑

?f2?R1??(z1?z)1???f2L??L??) 和0??1???1???1 ?R2??(z2?z2?R1??R2???L?z2?z1???可得两反射镜距离等效共焦腔中心O点的距离和等价共焦腔的焦距分别为

根据计算得到的数据,在下图中画出了等价共焦腔的具体位置。

16.某高斯光束腰斑大小为?0=1.14mm,?=10.6μm。求与束腰相距30cm、10m、1000m远处的光斑半径?及波前曲率半径R。

解:入射高斯光束的共焦参数

根据 求得:

Lz1??1.31m z2??0.51m f?0.50m等价共焦腔R1R2z2z1Off??02f??0.385m?2?z??(z)=?01????f?f2R(z)?z?zz 30cm 1.45mm 0.79m 10m 1000m ?(z) R(z) 2.97cm 2.96m 10.0m 1000m 专业整理分享

WORD资料可编辑

17.若已知某高斯光束之?0=0.3mm,?=632.8nm。求束腰处的q参数值,与束腰相距30cm处的q参数值,以及在与束腰相距无限远处的q值。

解:入射高斯光束的共焦参数

根据q(z)?z?q0?z?if,可得 束腰处的q参数为:q(0)?44.7icm

与束腰相距30cm处的q参数为:q(30)?(30?44.7i)cm 与束腰相距无穷远处的q参数为:Re(q)??,Im(q)?44.7cm

21.某高斯光束?0=1.2mm,?=10.6μm。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。

解:入射高斯光束的共焦参数

设入射高斯光束的q参数为q1,像高斯光束的q参数为q2,根据ABCD法则可知

??02f??44.7cm???02f??0.427m?111?? q1q2F其中 q1?l?if l和f分别为入射高斯光束的焦斑位置和共焦参数;q2??l??if?

?2??02??0 f?? l?和f?分别为像高斯光束的焦斑位置和共焦参数。f??? q2?Fq1 利用以上关系可得 F?q110m 2.00cm 2.40μm 1m 2.08cm 22.5μm 10cm 2.01cm 55.3μm 0 2.00cm 56.2μm l l? ?0? 从上面的结果可以看出,由于f远大于F,所以此时透镜一定具有一定的聚焦作用,并且不论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。

'22.CO2激光器输出光?=10.6μm,?0=3mm,用一F=2cm的凸透镜距角,求欲得到?0=20μm及

专业整理分享

WORD资料可编辑

2.5μm时透镜应放在什么位置。

解:入射高斯光束的共焦参数

??02f??2.67m?设入射高斯光束的q参数为q1,像高斯光束的q参数为q2,根据ABCD法则可知

111?? q1q2F其中 q1?l?if l和f分别为入射高斯光束的焦斑位置和共焦参数;q2??l??if?

?2??02??0 f?? l?和f?分别为像高斯光束的焦斑位置和共焦参数。f??? q2?Fq1 利用以上关系可得 F?q1?0??20μm时,l?1.39m,即将透镜放在距束腰1.39m处;

?0??2.5μm时,l?23.87m,即将透镜放在距束腰23.87m处。

\23.如图2.6光学系统,如射光?=10.6μm,求?0及l3。

图2.2

解:先求经过一个透镜的作用之后的束腰半径及位置 由于l1?F1,所以

F1?2cmF2?5cm?0?3mm'?0''?0l1?2cml2?15cml3l1??F1=2cm

?0???F?22.49μm??0 专业整理分享

激光原理第二章答案解析

WORD资料可编辑因此,只要选择小孔阑的边长满足0.7mm?2a?0.83mm即可实现TEM00模单模振荡。8.试求出方形镜共焦腔面上TEM30模的节线位置,这些节线是等距分布的吗?解:在厄米-高斯近似下,共焦腔面上的TEM30模的场分布
推荐度:
点击下载文档文档为doc格式
0dc1w1v86r553973044s2xc786b4a900yxb
领取福利

微信扫码领取福利

微信扫码分享