3.以多元线性回归为例说明序列相关会产生怎样的后果?(预测,矩阵表达式推到)
4.检验、修正序列相关的方法? 5.什么是DW检验法(前提条件)?
6.以多元线性回归为例说明多重共线性会产生怎样的后果 7.检验、修正多重共线性的方法?
8.随机解释变量问题的三种分类?分别造成的后果是什么? 9.工具变量法的前提假设
1)与所替代的随机解释变量高度相关 2)与随机干扰项不相关
3)与模型中其他解释变量不相关,以避免出现多重共线性 上届重点:
异方差、序列相关、多重共线性等违背基本假设的情况产生原因、后果、识别方式方法、D.W、广义差分法
第四章课后题(1.2)
1、2题为计算题,见课本P134,答案见P84
第五章 经典单方程计量经济学模型:专门问题
上届重点:
虚拟变量的含义与设定、滞后变量的含义、为何加入滞后和虚拟变量 第五章课后题(1.3.4.10)
1.回归模型中引入虚拟变量的作用是什么?有哪几种基本的引入方式?它们各适合用于什么情况?
答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式。
前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.滞后变量模型有哪几种类型?分布滞后模型使用OLS方法存在哪些问题?
答:滞后变量模型有分布滞后模型和自回归模型两大类,前者只有解释变量及其滞后变量作为模型的解释变量,不包含被解释变量的滞后变量作为模型的解释变量;而后者则以当期解释变量与被解释变量的若干期滞后变量作为模型的解释变量。分布滞后模型有无限期的分布滞后模型和有限期的分布滞后模型;自回归模型又以Coyck模型、自适应预期模型和局部调整模型最为多见。
分布滞后模型使用OLS法存在以下问题:(1)对于无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计。(2)对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后值之间可能存在高度线性相关,即模型可能存在高度的多重共线性。
4.产生模型设定偏误的主要原因是什么?模型设定偏误的后果以及检验方法有哪些?
答:产生模型设定偏误的原因主要有:模型制定者不熟悉相应的理论知识;对经济问题本身认识不够或不熟悉前人的相关工作:模型制定者手头没有相关变量的数据;解释变量无法测量或数据本身存在测量误差。
模型设定偏误的后果有:(1)如果遗漏了重要的解释变量,会造成OLS估计量在小样本下有偏,在大样本下非一致;对随机干扰项的方差估计也是有偏的。(2)如果包含了无关的解释变量,尽管OLS估计量具有无偏性与一致性,但不具有最小方差性。(3)如果选择了错误的函数形式,则后果是全方位的,不但会造成估计的参数具有完全不同的经济意义,而且估计结果也不同。
对模型设定偏误的检验方法有:检验是否含有无关变量,可以使用t检验与F检验完成:检验是否有相关变量的遗漏或函数形式设定偏误,可以使用残差图示法,Ramsey提出的RESET检验来完成。
10.简述约化建模理论与传统理论的异同点?
答:Hendry的约化建模理论的核心是“从一般到简单”的建模思想,即首先提出一个包括各种因素在内的“一般”模型,然后再通过观测数据,利用各种检验对模型进行检验并化简,最后得到一个相对简单的模型。传统建模理论的主导思想是“从简单到复杂”的建模思想,它首先提出一个简单的模型,然后从各种可能的备选变量中选择适当的变量进入模型,最后得到一个与数据拟合较好的较为复杂的模型。
从二者的主要联系上看,它们都以对经济现象的解释为目标,以已有的经济理论为建模依据,以对数据的拟合程度作为模型优劣的重要的判定标准之一,也都有若干检验标推。
从二者的主要区别上看,传统的建模理论往往更依赖于某种单一的经济理
论,旧“从一般到简单”的建模理论则更注重将各种不同经济理论纳入到最初的“一般”模型中,甚至更多地是从直觉和经验来建立“一般”的模型;尽管两者都有若干种检验标准,但约化建模理论从实践上有更大量的诊断性检验来看每一步建模的可行性,或寻找改善模型的路径:与传统建模实践中存在的过渡“数据开采”问题相比,由于约化建模理论的初估模型是一个包括所有可能变量的“一般”模型,因此也就避免了过度的“数据开采”问题;另外,由于初始模型的“一般”性,所有研究者在建模的初期往往有着相同的“起点”,因此,在相同的约化程序下,最后得到的最终模型也应该是相同的。而传统建模实践中对同一经济问题往往有各种不同经济理论来解释,如果不同的研究者采用不同的经济理论建模,得到的最终模型也会不同。当然,由于约化建模理论有更多的检验,使得建模过程更复杂,相比之下,传统建模方法则更加“灵活”。
第六章 联立方程计量经济学模型理论与方法
上届重点:
内生变量、外生变量、先定变量、结构式模型、简化式模型、参数关系体系、模型识别
第六章课后题(1.2.3.)
1.为什么要建立联立方程计量经济学模型?联立方程计量经济学模型适用于什么样的经济现象?
答:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚。
所以与单方程适用于单一经济现象的研究相比,联立方程计量经济学模型
适用于描述复杂的经济现象,即经济系统。
2.联立方程计量经济学模型的识别状况可以分为几类?其含义各是什么? 答:联立方程计量经济学模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度识别。
如果联立方程计量经济学模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程计量经济学模型中某个结构方程的确定的结构参数估计值,称该方程为不可识别。如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程计量经济学模型系统是可以识别的。反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程汁量经济学模型系统是不可以识别的。如果某一个随机方程具有唯一一组参数估计量,称其为恰好识别;如果某一个随机方程具有多组参数估计量,称其为过度识别。
3.联立方程计量经济学模型的单方程估计有哪些主要方法?其适用条件和统计性质各是什么?
答:单方程估计的主要方法有:狭义的工具变量法(IV),间接最小二乘法(ILS),两阶段最小二乘法(2SLS)。
狭义的工具变量法(IV)和间接最小二乘法(ILS)只适用于恰好识别的结构方程的估计。两阶段最小二乘法(2SLs)既适用于恰好识别的结构方程,又适用于过度识别的结构方程。
用工具变量法估计的参数,一般情况下,在小样本下是有偏的,但在大样本下是渐近无偏的。如果选取的工具变量与方程随机干扰项完全不相关,那么其参数估计量是无偏估计量。对于间接最小二乘法,对简化式模型应用普通最