好文档 - 专业文书写作范文服务资料分享网站

建筑基坑支护技术规程JGJ120-2012条文说明

天下 分享 时间: 加入收藏 我要投稿 点赞

滥用。采用该方法的前提是要有足够把握和经验。

传统和经典的极限平衡法可以手算,在许多教科书和技术册中都有介绍。由于该方法的一些假定与实际受力状况有一定差别,且不能计算支护结构位移,目前已很少采用了。经与弹性支点法的计算对比,在有些情况下,特别是对多支点结构,两者的计算弯矩与剪力差别较大。本规程取消了极限平衡法计算支护结构的方法。

4.1.2 基坑支护结构的有些构件,如锚杆与支撑,是随基坑开挖过程逐步设置的,基坑需按锚杆或支撑的位置逐层开挖。支护结构设计状况,是指设计时就要拟定锚杆和支撑与基坑开挖的关系,设计好开挖与锚杆或支撑设置的步骤,对每一开挖过程支护结构的受力与变形状态进行分析。因此,支护结构施工和基坑开挖时,只有按设计的开挖步骤才能满足符合设计受力状况的要求。一般情况下,基坑开挖到基底时受力与变形最大,但有时也会出现开挖中间过程支护结构内力最大,支护结构构件的截面或锚杆抗拔力按开挖中间过程确定的情况。特别是,当用结构楼板作为支撑替代锚杆或支护结构的支撑时,此时支护结构构件的内力可能会是最大的。

4.1.3~4.1.10 这几条是对弹性支点法计算方法的规定。弹性支点法的计算要求,总体上保持了原规程的模式,主要在以下方面做了变动: 1 土的反力项由

,即增加了常数项

,同时,基坑

面以下的土压力分布由不考虑该处的自重作用的矩形分布改为考虑土的自重作用的随深度线性增长的三角形分布。修改后,挡土结构嵌固段两侧的土压力之和没有变化,但按郎肯土压力计算时,基坑外侧基坑面上方和下方均采用主动土压力荷载,形式上直观、与其他章节表达统一、计算简化。 2 增加了挡土构件嵌固段的土反力上限值控制条件Psk≤Epk。由于土反力与土的水平反力系数的关系采用线弹性模型,计算出的土反力将随位移v增加线性增长。但实际上土的抗力是有限的,如采用摩尔-库仑强度准则,则不应超过被动土压力,即以Psk=Epk作为土反力的上限。

3 计算土的水平反力系数的比例m值的经验公式(4.1.6),是根据大量实际工程的单桩水平载荷试验,按公式,经与土层的c、φ值进行统计建立的。本次修订取消了按原规程公式(C.3.1)的计算方法,该公式引自《建筑桩基技术规范》JGJ 94,需要通过单桩水平荷载试验得到单桩水平临界荷载,实际应用中很难实现,因此取消。

4 排桩嵌固段土反力的计算宽度,将原规程的方形桩公式改为矩形桩公式,同时适用于工字形桩,比原规程的适用范围扩大。同时,对桩径或桩的宽度大于1m的情况,改用公式(4.1.7-2)和公式(4.1.7-4)计算。

5 在水平对撑的弹性支点刚度系数的计算公式中,增加了基坑两对边荷载不对称时的考虑方法。

4.2 稳定性验算

4.2.1~4.2.2 原规程对支挡式结构弹性支点法的计算过程的规定是:先计算挡土构件的嵌固深度,然后再进行结构计算。这样的计算方法使计算过程简化,省去了某些验算内容。因为按原规程规定的确定挡土构件嵌固深度后,一些原本需要验算的稳定性问题自然满足要求了。但这样带来了一个问题,嵌固深度必须按原规程的计算方法确定,假如设计需要嵌固深度短一些,可能按此设计的支护结构会不能满足原规程未作规定的某种稳定性要求。另外对有些缺少经验的设计者,可能会误以为不需考虑这些稳定性问题,而忽视必要的土力学概念。从以上思路考虑,本规程将嵌固深度计算改为验算,可供设计选择的嵌固深度范围增大了,但同时也就需要增加各种稳定性验算的内容,使计算过程相对繁琐了。第4.2.1条是对悬臂结构嵌固深度验算的规定,是绕挡土构件底部转动的整体极限平衡,控制的是挡土构件的倾覆稳定性。第4.2.2条对单支点结构嵌固深度验算的规定,是绕支点转动的整体极限平衡,控制的是挡土构件嵌固段的踢脚稳定性。悬臂结构绕挡土构件底部转动的力矩平衡和单

11 / 37

支点结构绕支点转动的力矩平衡都是嵌固段土的抗力对转动点的抵抗力矩起稳定性控制作用,因此,其安全系数称为嵌固稳定安全系数Kem。重力式水泥土墙绕墙底转动的力矩平衡,抵抗力矩时以墙体重力为主,因此其安全系数称为抗倾覆安全系数。双排桩绕挡土构件底部转动的力矩平衡,抵抗力矩包括嵌固段土的抗力对转动点的力矩和重力对转动点的力矩两部分,但由于嵌固段土的抗力作用在总的抵抗力矩中占主要部分,因此其安全系数也称为嵌固稳定安全系数Kem。

4.2.3 锚拉式支挡结构的整体滑动稳定性验算公式(4.2.3-2)以瑞典条分法边坡稳定性计算公式为基础,在力的极限平衡关系上,增加了锚杆拉力对圆弧滑动体圆心的抗滑力矩项极限平衡状态分析时,仍以圆弧滑动土体为分析对象,假定滑动面上土的剪力达到极限强度的同时,滑动面外锚杆拉力也达到极限拉力(正常设计情况下,锚杆极限拉力由锚杆与土之间的粘结力达到极限强度控制,但有时由锚杆杆体强度或锚杆注浆固结体对杆体的握裹力控制)。

滑弧稳定性验算应采用搜索的方法寻找最危险滑弧。由于目前程序计算已能满足在很短时间对圆心及圆弧半径以微小步长变化的所有滑动体完成搜索,所以不提倡采用先设定辅助线,然后在辅助线上寻找最危险滑弧圆心的简易方法。最危险滑弧的搜索范围限于通过挡土构件底端和在挡土构件下方的各个滑弧。因支护结构的平衡性和结构强度已通过结构分析解决,在截面抗剪强度满足剪应力作用下的抗剪要求后,挡土构件不会被剪断。因此,穿过挡土构件的各滑弧不需验算。

为了适用于地下水位以下的圆弧滑动体,并考虑到滑弧同时穿过砂土、粘性土的计算问题,对原规程整体滑动稳定性验算公式作了修改。此种情况下,在滑弧面上,粘性土的抗剪强度指标需要采用总应力强度指标,砂土的抗剪强度指标需要采用有效应力强度指标,并应考虑水压力的作用。公式

(4.2.3-2)是通过将土骨架与孔隙水一起取为隔离体进行静力平衡分析的方法,可用于滑弧同时穿过砂土、粘性土的整体稳定性验算公式,与原规程公式相比增加了孔隙水压力一项。

4.2.4 对深度较大的基坑,当嵌固深度较小、土的强度较低时,土体从挡土构件底端以下向基坑内隆起挤出是锚拉式支挡结构和支撑式支挡结构的一种破坏模式。这是一种土体丧失竖向平衡状态的破坏模式,由于锚杆和支撑只能对支护结构提供水平方向的平衡力,对隆起破坏不起作用,对特定基坑深度和土性,只能通过增加挡土构件嵌固深度来提高抗隆起稳定性。

本规程抗隆起稳定性的验算方法,采用目前常用的地基极限承载力的Prandtl(普朗德尔)极限平衡理论公式,但Prandtl理论公式的有些假定与实际情况存在差异,具体应用有一定局限性。如:对无粘性土,当嵌固深度为零时,计算的抗隆起安全系数Khe=0,而实际上在一定基坑深度内是不会出现隆起的。因此,当挡土构件嵌固深度很小时,不能采用该公式验算坑底隆起稳定性。

抗隆起稳定性计算是一个复杂的问题。需要说明的是,当按本规程抗隆起稳定性验算公式计算的安全系数不满足要求时,虽然不一定发生隆起破坏,但可能会带来其他不利后果。由于Prandtl理论公式忽略了支护结构底以下滑动区内土的重力对隆起的抵抗作用,抗隆起安全系数与滑移线深度无关,对浅部滑移体和深部滑移体得出的安全系数是一样的,与实际情况有一定偏差。基坑外挡土构件底部以上的土体重量简化为作用在该平面上的柔性均布荷载,并忽略了土中剪应力对隆起的抵抗作用。对浅部滑移体,如果考虑挡土构件底端平面以上土中剪应力,抗隆起安全系数会有明显提高;当滑移体逐步向深层扩展时,虽然该剪应力抵抗隆起的作用在总抗力中所占比例随之逐渐减小,但滑动区内土的重力抵抗隆起的作用则会逐渐增加。如在抗隆起验算公式中考虑土中剪力的对隆起的抵抗作用,挡土构件底端平面土中竖向应力将减小。这样,作用在挡土构件上的土压力也会相应增大,会降低支护结

12 / 37

构的安全性。因此,本规程抗隆起稳定性验算公式,未考虑该剪应力的有利作用。

4.2.5 本条以最下层支点为转动轴心的圆弧滑动模式的抗隆起稳定性验算方法是我国软土地区习惯采用的方法。特别时上海地区,在这方面积累了大量工程经验,实际工程中常常以这种方法作为挡土构件嵌固深度的控制条件。该方法假定破坏面为通过桩、墙底的圆弧形,以力矩平衡条件进行分析。现有资料中,力矩平衡的转动点有的取在最下道支撑或锚拉点处,有的取在开挖面处。本规程验算公式取转动点在最下道支撑或锚拉点处。在平衡力系中,桩、墙在转动点截面处的抗弯力矩在嵌固深度近于零时,会使计算结果出现反常情况,在正常设计的嵌固深度下,与总的抵抗力矩相比所占比例很小,因此在公式(4.2.5)中被忽略不计。

上海市标准《基坑工程设计规程》DBJ08-61-97中抗隆起分项系数的取值,对安全等级为一级、二级、三级的基坑分别取2.5、2.0和1.7,工程实践表明,这些抗隆起分项系数偏大,很多工程都难以达到。新编制的上海基坑工程技术规范,根据几十个实际基坑工程抗隆起验算结果,拟将安全等级为一级、二级、三级的支护结构抗隆起分项系数分别调整为2.2、1.9和1.7。因此本规程参照上海规范,对安全等级为一级、二级、三级的支挡结构,其安全系数分别取2.2、1.9和1.7。

4.2.6 地下水渗透稳定性的验算方法和规定,对本章支挡式结构和本规程其他章的复合土钉墙、重力式水泥土墙是相同的,故统一放在本规程附录。

4.3 排桩设计

4.3.1 国内实际基坑工程中,排桩的桩型采用混凝土灌注桩的占绝大多数,但有些情况下,适合采用型钢桩、钢管桩、钢板桩或预制桩等,有时也可以采用SMW工法施工的内置型钢水泥土搅拌桩。这些桩型用作挡土构件时,与混凝土灌注桩的结构受力类型是相同的,可按本章支挡式支护结构进行设计计算。但采用这些桩型时,应考虑其刚度、构造及施工工艺上的不同特点,不能盲目使用。

4.3.2 圆形截面支护桩,沿受拉区和受压区周边局部均匀配置纵向钢筋的正截面受弯承载力计算公式中,因纵向受拉、受压钢筋集中配置在圆心角2παs、2πα's内的做法很少采用,本次修订将原规程公式中集中配置钢筋有关项取消。同时,增加了圆形截面支护桩的斜截面承载力计算要求。由于现行国家标准《混凝土结构设计规范》GB50010中没有圆形截面的斜截面承载力计算公式,所以采用了将圆形截面等代成矩形截面,然后再按上述规范中矩形截面的斜截面承载力公式计算的方法,即“可用截面宽度b为1.7r和截面有效高度h0为1.6r的矩形截面代替圆形截面后,按现行国家标准《混凝土结构设计规范》GB50010对矩形截面斜截面承载力的规定进行计算,此处,r为圆形截面半径。等效成矩形截面的混凝土支护桩,应将计算所得的箍筋截面面积作为圆形箍筋的截面面积,且应满足该规范对梁的箍筋配置的要求。”

4.3.4 本条规定悬臂桩桩径不宜小于600mm、锚拉式排桩与支撑式排桩桩径不宜小于400mm,是通常情况下桩径的下限,桩径的选取主要还是应按弯矩大小与变形要求确定,以达到受力与经济合理的要求,同时还要满足施工条件的要求。特殊情况下,排桩间距的确定还要考虑桩间土的稳定性要求。根据工程经验,对大桩径或粘性土,排桩的净间距在900mm以内,对小桩径或砂土,排桩的净间距在600mm以内较常见。

13 / 37

4.3.5 该条对混凝土灌注桩的构造规定,以保证排桩作为混凝土构件的基本受力性能。有些情况下支护桩不宜采用非均匀配置纵向钢筋,如,采用泥浆护壁水下灌注混凝土成桩工艺而钢筋笼顶端低于泥浆面,钢筋笼顶与桩的孔口高差较大等难以控制钢筋笼方向的情况。

4.3.6 排桩冠梁低于地下管线是从后期主体结构施工上考虑的。因为,当排桩及冠梁高于后期主体结构各种地下管线的标高时,会给后续的施工造成障碍,需将其凿除。所以,排桩桩顶的设计标高,在不影响支护桩顶以上部分基坑的稳定与基坑外环境对变形的要求时,宜避开主体建筑地下管线通过的位置。一般情况,主体建筑各种管线引出接口的埋深不大,是容易做到的,但如果将桩顶降至管线以下,影响了支护结构的稳定或变形要求,则应首先按基坑稳定或变形要求确定桩顶设计标高。

4.3.7 冠梁是排桩结构的组成部分,应符合梁的构造要求。当冠梁上不设置锚杆或支撑时,冠梁可以仅按构造要求设计,按构造配筋。此时,冠梁的作用是将排桩连成整体,调整各个桩受力的不均匀性,不需对冠梁进行受力计算。当冠梁上设置锚杆或支撑时,冠梁起到传力作用,除需满足构造要求外,应按梁的内力进行截面设计。

4.3.9 泄水管的构造与规格应根据土的性状及地下水特点确定。一些实际工程中,泄水管采用长度不小于300mm,内径不小于40mm的塑料或竹制管,泄水管外壁包裹土工布并按含水土层的粒径大小设置反滤层。

4.4 排桩施工与检测

4.4.1 基坑支护中支护桩的常用桩型与建筑桩基相同,主要桩型的施工要求在现行国家行业标准《建筑桩基技术规范》JGJ94中已作规定。因此,本规程仅对桩用于基坑支护时的一些特殊施工要求进行了规定,对桩的常规施工要求不再重复。

4.4.2 本条是对当桩的附近存在既有建筑物、地下管线等环境且需要保护时,应注意的一些桩的施工问题。这些问题处理不当,经常会造成基坑周边建筑物、地下管线等被损害的工程事故。因具体工程的条件不同,应具体问题具体分析,结合实际情况采取相应的有效保护措施。

4.4.3 支护桩的截面配筋一般由受弯或受剪承载力控制,为保证内力较大截面的纵向受拉钢筋的强度要求,接头不宜设置在该处。同一连接区段内,纵向受力钢筋的连接方式和连接接头面积百分率应符合现行国家标准《混凝土结构设计规范》GB50010对梁类构件的规定。 4.4.7 相互咬合形成竖向连续体的排桩是一种新型的排桩结构,是本次规程修订新增的内容。排桩采用咬合的形式,其目的是使排桩既能作为挡土构件,又能起到截水作用,从而不用另设截水帷幕。由于需要达到截水的效果,对咬合排桩的施工垂直度就有严格的要求,否则,当桩与桩之间产生间隙,将会影响截水效果。通常咬合排桩是采用钢筋混凝土桩与素混凝土桩相互搭接,由配有钢筋的桩承受土压力荷载,素混凝土桩只用于截水。目前,这种兼作截水的支护结构型式已在一些工程上采用,施工质量能够得到保证时,其截水效果是良好的。

液压钢套管护壁、机械冲抓成孔工艺是咬合排桩的一种形式,其施工要点如下:

1 在桩顶预先设置导墙,导墙宽度取3~4m,厚度取0.3~0.5m;

2 先施作素混凝土桩,并在混凝土接近初凝时施作与其相交的钢筋混凝土桩;

14 / 37

3 压入第一节钢套管时,在钢套管相互垂直的两个竖向平面上进行垂直度控制,其垂直度偏差不得大于3‰;

4 抓土过程中,套管内抓斗取土与套管压入同步进行,抓土面在套管底面以上的高度应始终大于1.0m;

5 成孔后,夯实孔底;混凝土浇注过程中,浇注混凝土与提拔套管同步进行,混凝土面应始终高于套管底面;套管应垂直提拔;提拔阻力大时,可转动套管并缓慢提拔。

4.4.9 冠梁通过传递剪力调整桩与桩之间力的分配,当锚杆或支撑设置在冠梁上时,通过冠梁将排桩上的土压力传递到锚杆与支撑上。由于冠梁与桩的连接处是混凝土两次浇注的结合面,如该结合面薄弱或钢筋锚固不够时,会剪切破坏不能传递剪力。因此,应保证冠梁与桩结合面的施工质量。

4.5 地下连续墙设计

4.5.1地下连续墙作为混凝土受弯构件,可直接按现行国家标准《混凝土结构设计规范》GB50010的有关规定进行截面与配筋设计,但因为支护结构与永久性结构的内力设计值取值规定不同,荷载分项系数不同,按上述规范的有关公式计算截面承载力时,内力应按本规程的有关规定取值。

4.5.2 目前地下连续墙在基坑工程中已有广泛的应用,尤其在深大基坑和环境条件要求严格的基坑工程,以及支护结构与主体结构相结合的工程。按现有施工设备能力,现浇地下连续墙最大墙厚可达1500mm,采用特制挖槽机械的薄层地下连续墙,最小墙厚仅450mm。常用成槽机的规格为600mm、800mm、1000mm或1200mm墙厚。

4.5.3对环境条件要求高、槽段深度较深,以及槽段形状复杂的基坑工程,应通过槽壁稳定性验算,合理划分槽段的长度。

4.5.9 槽段接头是地下连续墙的重要部件,工程中常用的施工接头如图1、图2所示。

15 / 37

建筑基坑支护技术规程JGJ120-2012条文说明

滥用。采用该方法的前提是要有足够把握和经验。传统和经典的极限平衡法可以手算,在许多教科书和技术册中都有介绍。由于该方法的一些假定与实际受力状况有一定差别,且不能计算支护结构位移,目前已很少采用了。经与弹性支点法的计算对比,在有些情况下,特别是对多支点结构,两者的计算弯矩与剪力差别较大。本规程取消了极限平衡法计算支护结构的方法。4.1.2基坑支护结构的
推荐度:
点击下载文档文档为doc格式
0csro2bhu27b8vd538ce5nrap1rg1l00xiv
领取福利

微信扫码领取福利

微信扫码分享