?1?a3=2?1+?·a2=72. ?2?
又∵2=2·2,n∈N+,∴?2?为等比数列.
(n+1)n?n?∴2=2·2n1
2
2
an+1an?an?
ana1
n-1
=2,
n∴an=n·2. (2)证明:cn==nn1
,
ann·2n∴c1+c2+c3+…+cn =
1?11111111?11
++·?4+5+…+n? 2+3+…+n<++2?1·22·23·2n·228244?22
1??1?n-3?1
?4?1-??4
212??2?21?212=+·<+·=+ 341341332
1-1-226767096×77
==<=,所以结论成立. 9696096×1010
2017_18学年高中数学第二讲证明不等式的基本方法第3节反证法与放缩法创新应用教学案
?1?a3=2?1+?·a2=72.?2?又∵2=2·2,n∈N+,∴?2?为等比数列.(n+1)n?n?∴2=2·2n122an+1an?an?ana1n-1=2,n∴an=n·2.(2)证明:cn==nn1,a
推荐度:
点击下载文档文档为doc格式