好文档 - 专业文书写作范文服务资料分享网站

表示方程的科技英语

天下 分享 时间: 加入收藏 我要投稿 点赞

表示方程的科技英语 I (581-620)

581. Suppose that PX=0 at x=xs

假设当x=xs时PX=0。

582. The assumption that the mean cloud velocity, vc, equals the large-scale velocity at the cloud, , leads to expression F=xyz.

假设运的平均速度vc,等于云底的大尺度速度,则有表达式F=xyz。 583. Assuming that U>0 and V>0, the solution takes the form F=xyz.

假定U>0和V>0,则解取如下形式:F=xyz。

584. With dissipation assumed to be negligible compared to the production and entrainment terms, and recalling that u2=CU2, we may write F=xyz.

假设耗散项同生成项和夹卷项相比可以忽略不计,且注意到u2=CU2,我们得到方程:F=xyz。 585. ψ is a streamfunction for the perturbed flow. It may be shown that, with μ=0, F=xyz. ψ是扰动气流的流函数,当μ=0时,可以给出F=xyz。 586. With the definitions

We can write the 11-coefficient system for model II as F=xyz. 以下列定义:

我们可以把模式II这11个系数方程组写为F=xyz。

587. The correlated spectrum Ew (k, t) is defined in the following way: F=xyz. 相关谱Ew (k, t) 以下列形式定义:F=xyz。

588. The magnetic field H (x , z) and the magnetic flux density B (x , z) are related to ψ (x , z) as follows: F=xyz.

磁场H (x , z)和磁通量密度B (x , z)与ψ (x , z)的关系如下:F=xyz。 589. The diabatic heating, Q, is given by F=xyz. 非绝热加热Q由F=xyz给出。

590. As in Chapter 6 and following Charney (1969), we may write the potential vorticity equation on β-plane as F=xyz.

根据第六章所述并根据Charney(1969)给出的方程,我们可以把β平面上的位势涡度方程写为:F=xyz。

591. The equation may also be written as a proportion: x/y=a/b.

此方程还可写为比例形式:x/y=a/b。

592. In virtue of (6) this can be expressed alternatively as F=xyz. 通过(6),本方程还可写为F=xyz。

593. The boundary conditions W*=0 at z=0 and z=1 allow an alternative form of (15) F=xyz. 在z=0和z=1时,边界条件W*=0可使我们得出(15)的另一形式:F=xyz。 594. Each of the dissipation and diffusion terms has the form, i.e., 每一耗散项和扩散项形式如下:

595. The thermal wind problem can be formulated as F=xyz. 热成风问题可以写成如下方程:F=xyz。

596. From (8) we have the equation in the form F=xyz. 由(8)式我们得到方程:F=xyz。

597. In linear form the τx and τy equations read F=xyz.

τx和τy方程的线性表达式为F=xyz。

598. By analogy to (2) we can write the equation F=xyz. 根据(2)式类推,我们可写出方程:F=xyz。

599. At the boundary upstream of a change in surface roughness, it is assumed F=xyz.

在地面粗糙度发生变化的上游边界,关系式可取F=xyz。

600. If the continuity equation is multiplied by u and added to (2.5), there results F=xyz. 如果此连续方程乘以u并与(2.5)式相加,则有F=xyz。

601. Thus, the energy contained between two wave crests must be independent of H and so (10) follows.

因此,两个波峰之间的能量必然与H无关,经过有(10)式。 602. The equation follows from the fact that... 此方程据以下考虑建立......

603. Whence (3.2) follows immediately from (3.1).

因此,由(3。1)立刻得到(3。2)。

604. From (6) it results that the fraction of this energy falling to a single molecule of the carbon dioxide follows the relation F=xyz.

由(6)式我们得到落到单个CO2分子上的那部分能量服从关系式F=xyz。 605. Like Leith and Draichnan, we shall take KE(t) to be such that F=xyz. 象Leith和Draichnan一样,我们取KE(t)为某一形式,可得出F=xyz。

606. To obtain dimensionless equations, introduce the following nondimensional (asterisk) quantities F*1=x1/y1, F*2=x2/y2.

为了得到无量纲方程组,我们引入无量纲(带*号的)量:F*1=x1/y1, F*2=x2/y2。 607. Where R= H=convection, G= conduction, and LE=latent heat flux 式中R为净辐射,H为对流,G为热传导,LE为潜热通量。

608. in which R is net radiation, H convection, G conduction and LE latent heat flux. 式中R为净辐射,H为对流,G为热传导,LE为潜热通量.

609. Where conventional notation for the model variables are adopted.

式中采用了常用的模式变量符号。

610. The Explanations on the symbolic used in (1) and (2) are as follows: 方程(1)和(2)中所用符号(字母)的解释如下:

611. in which φ is geographic latitude. Subscripts '1' and '2' indicate conditions at the beginning and the end of meridional displacement of air, respectively.

式中φ是地理纬度,下标1和2 分别表示空气经向位移时始末的状况。

612. Superscripts 0 and 6 indicate the data from the VCS and VC6 experiment, respectively. 上标0和6 分别表示资料取自VCS和VC6试验。

613. All primed terms are initially zero for the experiments. 所有右角带撇的项在这些实验开始时都为零。 614. h is the depth, taken constant for the present. h是厚度,现在取为常数。

615. Substituting Eq. (35) into (32) gives F=xyz. 把(35)式代入(32)式,则有F=xyz。

616. On substitution of (2.4), (2.2) reduces to F=xyz.

把(2。4)式代入(2。2)式,则(2。2)式化简为F=xyz。 617. By substituting (3) into (7), we obtain F=xyz.

把(3)式代入(7)式,我们得到F=xyz。

618. If we make substitution of (4) into (10), then we have F=xyz. 如果我们把(4)代入(10),则得F=xyz。

619. The substitution of (2.4) into (2.5), followed by use of (2.1), leads to F=xyz.

把(2。4)代入(2。5),然后通过(2。1)得出F=xyz。

620. Substituting (3.1) into (2.8), Dropping higher order terms, and removing the prime notation for simplicity, we obtain the linear variable coefficient system F=xyz. 把(3。1)代入(2。8),舍去高阶项,为了简便起见去掉项上撇号,则得到线性变量系数方程组F=xyz。 II (621-660)

621. Substituting (12) into (10) it follows that F=xyz. 把(12)式代入(10)式,则有F=xyz。

622. By inserting (1.7), and after some lengthy manipulations, we obtain F=xyz.

把(1。7)式代入,经过一些复杂运算,得到F=xyz。 623. By eliminating v in (3), one gets F=xyz. 在(3)中消去v则得F=xyz。

624. Elimination of μ in Equation(11) by use of Equation(6), followed by elimination of ε by use of Equation(12), results in F=xyz. 采用方程(6)消去方程(11)中的μ,(接着)再用方程(12)消去其中的ε我们得到F=xyz。 625. Combining (71) and (72) allows us to write the expression for wave propagation F=xyz. 合并(71)和(72),我们可得到波的传播方程F=xyz。 626. By combining these equations, we get F=xyz.

合并这些方程则得F=xyz。

627. Eq. (2) can be written, neglecting the nonlinear terms, as F=xyz.

略去非线性项,方程(2)可被写为F=xyz。

628. Introducing (5) into (7), the expression becomes F=xyz. 把(5)引入(7),此表达式成为F=xyz。 629. Equating these expressions produces F=xyz. 把这个表达式列成方程则得F=xyz。

630. Carrying out a Laplace transformation with respect to t or F1=x1y1z1 and considering only one wave component exp (-ikx), (1) is reduced to F2=x2y2z2.

相对于t进行Laplace变换F1=x1y1z1 并只考虑一个波分量exp (-ikx),于是(1)式简化为F2=x2y2z2。

631. Multiplying (5a, b and c) by Hu', Hv', and gh', respectively, then adding the resulting equations yields the energy equation.

式5a、5b、5c分别乘以Hu'、Hv'、gh',然后把所得到的三个方程相加,则得出能量方程。 632. The ΔQ equation, which is derived by subtracting the Q equation at h0 from that h2, becomes in steady conditions F=xyz.

此ΔQ方程(它是由h2时的Q方程减去h0时的Q方程而得出)在定常条件下变为F=xyz。 633. Addition of (12c) and (10) produces F=xyz. (12c)和(10)相加则得F=xyz。

634. Then, we can write a non-local analog to (3), integrate over time Δt, and normalize by diving by Ei to give F=xyz.

于是我们可以写出一个与(3)式类似的非局地方程,在Δt时间内对它进行积分,再通过

除以Ei进行归一化,结果得到F=xyz。

635. Upon vertical integration of the above equations we obtain F=xyz. 根据对以上方程的垂直积分,我们得到F=xyz。 636. Next, we integrate x from zero to Z exclusive.

接着,我们在零到(Z-1)范围内对x进行积分。

637. The integration is performed over the full range of variation of P from P1 to P2 and back to P1.

对P的整个变化范围进行积分,即从P1到P2再返回到P1。

638. Now by integrating (36) by parts repeatedly and using the boundary condition ψ=0 and s=1, the asymptotic expansion for ψis F=xyz.

现在反复对(36)进行分部积分,并使用s=1时ψ=0这一边界条件,则得到ψ的渐进展开式F=xyz。

639. Now by integrating this equation three times, firstly with respect to time for one period, secondly with respect to meridional distance y over (-∞,+∞) and thirdly indefinitely with respect to zonal distance x, it follows that F=xyz.

现在对此方程积分三次,首先相对于一个周期作时间积分,其次相对于经向距离y在(-∞,+∞)范围内积分,最后相对于纬向距离x进行不定积分,结果有F=xyz。

640. Several other integrations were performed on initial conditions slightly different from those described in Section 4.

另外几个积分是根据与第四节给出的稍有不同的初始条件进行计算得到的。 641. Differentiating Eq. (10.2) with respect to z, we obtain the thermal wind equation. 将(10。2)式相对于z进行微分,我们得到热成风方程。

642. By solving (7) for the height, (12) reduces, after rearrangement, to F=xyz. 解(7)式求出高度,经过整理,则(12)式化简为F=xyz。

643. After invoking a number of simplications and approximations, they derived the following expression F=xyz.

在进行了一些简化和近似处理后,我们得到以下表达式F=xyz。 644. By taking the ensemble average of (3), it follows that F=xyz. 对(3)取总体平均,结果有F=xyz。

645. We follow exactly the same procedure as in Section 3 to find the dispersion equation. 我们完全采用了如在第三节给出的步骤获得了色散方程。

646. Following a similar procedure from (2.11) to (2.13), we get F=xyz.

采用与(2。11)--(2。13)相同的(类似的)步骤,我们得到F=xyz。

647. The daily global diabatic heating rates are calculated as a residual to the thermodynamic energy equation whose form is given in Smith (1979) as F=xyz.

逐日全球非绝热加热率作为热力学能量方程的余项(残差项)处理,该方程由Smith(1979)给出为F=xyz。

648. The entrainment data of Deardorff (1979) are fit well by Turner's law in the form F=xyz.

Deardorff(1979)获得的这些夹卷资料能应用Turner定律加以很好地拟合,其形式如下:F=xyz。

649. Applying a one-side t-test, the difference in the principal component for the monthly mean temperature is significant at the 5% level.

采用单侧t-检验,月平均气温这一主分量的差值在5%的水平上是显著的。

650. The standard deviation at the equator is 0.5%. This means that a zonal mean albedo

increase of 1% for a 30-day interval is statistically significant at the 95% level.

在赤道这一标准差是0。5%,这就是说在30天间隔纬向平均反射率增加1%,在95%水平时统计上是显著的。

651. In order to proceed, we need an expression for We0 the entrainment velocity at z=h0 为了进行推导,我们需要求在z=h0时夹卷速度We0的表达式。 652. When (7) is solved for Re, the result is F=xyz. 当解(7)求出Re时,此结果是F=xyz。 653. The proof of (3) follows similar lines. 对(3)式证明采用同样的方法(步骤)。 654. For b=1, L=0.46 results.

当b=1时,有L=0。46。

655. The terms will be dealt with separately.

这些项将分别讨论。

656. Equation 20a, b may also be used to.... The procedure is well known, and the result is F=xyz. 方程20a和b还可用来。。。。。。。因其推导过程是人们熟知的,此处只给出其结果:F=xyz。 657. Mathematically the result C=0 follows readily from integrating (2.2) over the area enclosed by a closed streakline.

在数学上,这一结果,即C=0,很容易通过对式(2.2)的密纹线包围起来的区域进行积分得到。 658. tanθ=v2/gr, hence v2=gr tanθ so that v= . tanθ=v2/gr,因此v2=gr tanθ,于是v= 。

659. As in the case of linear motion, Eq. (1) holds for any type of angular motion while the other four are true only for uniformly accelerated angular motion.

如在关于线性运动的情况一样,方程(1)适用于任何类型的角运动,而另外四个方程只适用于匀加速角运动。

660. When the brace is negative, N is positive and (4.20) predicts stable, finite amplitude oscillations.

当大括号一项为负时,N为正,因此(4.20)式预报出稳定的有限振幅的振荡。

表示方程的科技英语

表示方程的科技英语I(581-620)581.SupposethatPX=0atx=xs假设当x=xs时PX=0。582.Theassumptionthatthemeancloudvelocity,vc,equalsthelarge-scalevelocityatthecloud,
推荐度:
点击下载文档文档为doc格式
0cpe08kn3q4uc568cqjj1x2cx44ea901a9x
领取福利

微信扫码领取福利

微信扫码分享