摘要
PID参数整定是自动控制领域研究的重要内容,PID参数的最优性决定了控制的稳定性和快速性,也可保证系统的可靠性。传统的PID参数多采用试验加试凑的方式由人工进行优化,往往费时并且难以满足控制的实时要求。为了解决PID参数的优化问题,采用单纯形法对PID参数寻优,以获得满意的控制效果。
本文介绍了单纯形法的基本原理,并针对单纯形法在PID参数寻优中存在的问题进行了分析,并对其进行了实验仿真。结果表明,用单纯形法整定PID参数,可以提高优化性能,对控制系统具有较好的控制精度、动态性能。
关键词:PID控制器 单纯形法 PID整定
I
一、综述
1.1选题背景
PID调节器是最早发展起来的控制策略之一,因为它所涉及的设计算法和控制结构都是简单的,并且十分适用于工程应用背景,此外PID控制方案并不要求精确的受控对象的数学模型,且采用PID控制的控制效果一般是比较令人满意的,所以在工业实际应用中,PID调节器是应用最为广泛的一种控制策略,也是历史最久、生命力最强的基本控制方式。调查结果表明在当今使用的控制方式中,PID型占84.5%,优化PID型占6.8%,现代控制型占有1.5%,手动控制型6.6%,人工智能(AI)型占0. 6%。如果把PID型和优化PID型二者加起来则占90%以上,这说明PID控制方式占绝大多数,如果把手动控制型再与上述两种加在一起,则占97. 5%,这说明古典控制占绝大多数。就连科学技术高度发达的日本,PID控制的使用率也高达84.%。
这是由于理论分析及实际运行经验已经证明了PID调节器对于相当多的工业过程能够起到较为满足的控制效果。它结构简单、适用面广、鲁棒性强、参数易于调整、在实际中容易被理解和实现、在长期应用中已积累了丰富的经验。特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大的代价进行模型辨识,但往往不能达到预期的效果,所以不论常规调节仪表还是数字智能仪表都广泛采用这种调节方式。正是PID控制算法具有以上多种优点,所以这种算法仍将在现场控制中居于主导地位
随着现代控制理论的建立和不断发展完善,对过程控制提出了新的方法和思路,同日寸也由于生产工艺不断地改进提高,对过程控制也提出了高要求。科研人员在不断探索新方法的同时,也对传统的PID控制的改进做了大量的研究。因为PID控制有其固有的优点,使得PID控制在今后仍会大量使用,如何进一步提高PID控制算法的能力或者依据新的现代控制理论来设计PID控制算法是一个非常吸引人的课题。科研人员在这一领域做的工作主要有以下两方面。
① PID参数自整定。由于受控对象存在着大量不可知因素,如随机扰动、系统时变、敏感误差等,这些不可知因素的作用常会导致受控对象参数的改变。在一个PID反馈控制回路中,受控对象参数的变化就会造成原来的PID参数控制性能的降低,为了克服这个问题人们提出了PID参数自整定,也就是随着受控对象的变化PID调节器自我调整和重新设定PID参数,科研人员根据古典控制理论和现代控制理论提出了许多种PID参数的在线自整定的方法。至今仍有人在这方面继续作研究。PID参数在线自整定方法比较典型的有改进型Ziegler-Nichols临界比例度法、基于过程模型辨识的参
1
数自整定、基于经验的专家法参数自整定、模糊型PID调节器等。
② PID参数优化。PID参数优化是指依据一定的控制目标和给定的生产过程的模型通过理论计算得到最优的PID参数,PID参数优化在PID控制应用之初人们就开始作了大量研究工作,已经提出了许多种方法,如粒子群优化算法,免疫算法,单纯形法,差分进化算法,神经网络算法,遗传算法等。
本文就是应用单纯性算法对二阶对象的PID控制器参数优化,使系统进行具有更好的性能。
1.2 PID参数优化方法综述
1.2.1 Ziegler-Nichols设定方法
Ziegler与Nichols(1942)提出了调节PID控制器的参数的经验公式,这一调节器可根据带有时滞环节的一阶近似模型的阶跃响应或频率响应数据来设定。假设对象模型为
G(s)?根据对象参数K、T、和?可以由经验公式求取控制器的参数。 1.2.2临界比例度法
当已系统的临界比例增益数,例如:
Ke??s1?Ts
KC
和振荡周期
TC时,也可以用经验整定公式来确定PID控制器的参
?KP?0.6KC??TI?0.5TC?T?0.125TC?D
以上两种传统方法都是根据大量的实验计算或实际工程经验所得到的数据整理汇总所得到的公式而得来的,在实际的工程应用中有很大的弊端。 1.2.3 单纯形法
单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。
单纯形法具有初值敏感性。在初始条件选择不当的情况下,单纯形法无法寻找到合适的参数,
2