好文档 - 专业文书写作范文服务资料分享网站

一维谐振子的本征值问题

天下 分享 时间: 加入收藏 我要投稿 点赞

一维谐振子的本征值问题

姜罗罗

赣南师范学院物理与电子信息科学系物理学专业2000级(2)班

摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前

?的本征态景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?与升算符a??、光子数n与相位?的最小不确即谐振子的相干态,并由降算符a定关系得出相干态和压缩态。

关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。

在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动[1].1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式[2].一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一

1

般的教材只给定了波动力学的解法[3].自1963年,Glauber[4]等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光学等领域[5?13]。

一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研

?的本征态即谐振子的相干究前沿课题之一。最后从Dirac算子代数中求解出a?与升算符a??、光子数n与相位?的最小不确定关系得出相干态,并由降算符a态和压缩态。

1.矩阵力学解法

取自然平衡位置为坐标原点,并选原点为势能零点,则一维谐振子势V可表成

Vx?12kx (1) 2k为刻画简谐作用力强度的参数.设谐振子质量为?,令 ??k? (2)

它是经典谐振子的自然频率,则一维谐振子的Hamilton量可表为 图1.一维谐振子势

2?p1???2 (3) H???2x2?2?表象中,由于 在能量H 2

?)?f(xi?),p?] (4a) ??[f(x?x??)i?f(p?),x?] (4b) ?[f(p?x?因此有

??Hi???????[H???2xP?PH]

??x?(5a)

??i?????Hp??[HX?XH] (5b) ??p???表象的矩阵元ij,由于 取H Hij?Eij?ij

(6)

故有

?ij??(Ei?Ej)p?ij (7a) ??2xi??ijp??i?ij (7b) (Ei?Ej)x??矩阵的对角性, (7a),(7b) 两式中的矩阵乘法的取和消失了。且只是由于H?ij和pij 两个未知量的方程,与x,p的其它矩阵元无关,这是谐振子特性的

体现,从而使得求解矩阵元大为简化。得

Ei?Ej????

(8)

则有

Ei?(i??)??, i?0,?1,?2... 0???1 (9)

不为零的矩阵元为

pij?pij(?j,i?1??j,i?1) (10a)

3

?ij?x?ij(?j,i?1??j,i?1) (10b) x由(6)式得

pi,i?1?pi?1,i22?(i??)?? (11)

此式的解为

pi,i?1?ci???12 (12) 由(10b)式可知i?0,为满足此条件应有

p?1,0?0即c?1???12?0 得 则

2. Dirac算符算子代数解法 2.1求解一维谐振子能量本征值由(3)式,采用自然单位??????1,则

H?12(x2?p2) (15) 因此H具有相空中的旋转不变性,令

a??12(x??ip?)?1d2(x??dx?) (16a) a???1d2(x??ip?)?12(x??dx?) (16b) 利用[x?,p?]?i?,容易得 Ei?1i?(2)??,??12

(13)

i=1,2…

(14)

4

?,a??]??i[x?,p?]?1 (17) [a对H进行因式分解

d1??1[(?d?x??1 (18) ?)(?x?)?1]?(a??a??)?NH??2dxdx22式中

??a??a? N(19)

?,N?]=0 [H(20)

因为

????a??a???a???N2?0 (21)

???(a? (22) ??a?)??a??a??NN?为正定Hermite算符,H?亦为正定Hermite算符 所以N设

?n?nn N(23)

?的一个本征态,由(17)(18)式得 n为正数,n表示N?,a?]??a? (24a) [N?,a??]?a?? (24b) [N?a?,a?)n?(n?1)a??n?([N??]?a??N??n (25a) N??,a?)n?(n?1)a?n?([N?]?a?N?n (25b) Na?的本征态,?的本征态,??n也是N?n与a因此可知,若n为N且本征值为n,则a 5

一维谐振子的本征值问题

一维谐振子的本征值问题姜罗罗赣南师范学院物理与电子信息科学系物理学专业2000级(2)班摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它
推荐度:
点击下载文档文档为doc格式
0cmck2cf331x2cw44edq
领取福利

微信扫码领取福利

微信扫码分享