考研数学高数复习需要掌握的要点
考研数学高数复习的重点 从大纲中拓实基础
高等数学包括八章内容:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、向量代数和空间解析几何;5、多元函数微分学;6、多元函数积分学;7、无穷级数;8、常微分方程。每一章又有若干知识点,比如函数、极限与连续部分主要考查分段函数极限或已知极限原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根等。考生在正式考纲出来前,可依据前一年的考纲内容进行复习。等当年考纲出来后,再查补大纲更改后的知识点。
分析近几年考生的数学答卷可以发现,很多考生失分的重要原因就是对基本概念、定理理解不准确,对数学中最基本的方法掌握不好,给解题带来思维上的困难。由此我提醒考生,在复习过程中,一定要按照大纲对数学基本概念、基本方法、基本定理准确把握。因为只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。
从训练中形成解题思路
记牢基本概念、定理、公式和结论后,要加强针对性的训练。“练”字当头说明了数学考试就是解题,像基本概念、基本公式、基本结论等也只有在反复练习中才会真正巩固。因此,考研数学要拿高分,前后不做上千道题是不行的,除此以外没有什么“速成”之类的旁门左道。
题做多后,就会提高解题能力,尤其是解综合性试题和应用题能力。复习时考生要注意搞清有关知识的纵向、横向联系,形成一个有机的体系。例如,解应用题一般是在理解题意的基础上建立数学模型,这种题目现在每年都考,考生需要平时进行强化训练。再比如说,在解综合题时,能否迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。为此必须在复习备考时对所学知识进行重组,转化为自己真正掌握的东西。
从真题中提炼经典题型
统计表明,每年的研究生(论坛)入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试
题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。
对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考(论坛)生解题的速度和准确性。
从近年考研数学真题中,明显可以看出以下考察重点: A注重考察考生对基本概念、基本公式、基本结论的掌握。 B对跨章节、跨科目的综合考查。
据近几年出现的概率,可将以下几种典型的试题作为复习重点:一、级数与积分的综合题;二、微积分与微分议程的综合题;三、求极限的综合题;四、空间解析几何与多元函数微分的综合题;五、线性代数与空间解析几何的综合题。 最后,针对历年大纲和真题的考察重点,提醒考生在复习中要具体注意一些事项:
1、复习要遵循步骤。应首先对高等数学、线性代数、概率论与数理统计三个部分的重要知识点进行系统复习。尤其是高等数学的重要知识点,因其往往占有很大分值,应作为重中之重。清楚了各个考点,形成一个知识体系,掌握了基础后,整个数学的复习都会比较轻松,并取得事半功倍的效果。然后是整理数学班的笔记,熟悉掌握笔记中所讲的出题点和各种解题规律,这样就可以进入做题状态了。
综合性试题和应用题,在初步复习时可以不作为强化重点,而应逐步进行训练,积累解题思路,同时还可以帮助提高各个知识点的理解和消化。注意解题技巧。每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。以后碰到类似的题目,就跳过不做了。这样不仅可以做到熟练运用相关知识点和解题方法,还可以少做大量无用功,节省很多复习时间,从而大大提高了复习效率。
2、不要钻偏题、怪题。考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显著提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。
3、平时做题养成细心的习惯。无论是大题还是小题,都不容轻心。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数
学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。
4、数学真题的复习要按章节进行。这样,在做真题的过程中,就可以做到以一年代替历年,即在历年考试中大多数的题型都是类似地重复地出现,因此没必要花太多时间在每年类似的题上。而且,在研究完历年真题后,自己可以很清楚历年考试出题的重点和难点,使冲刺阶段的总结性复习更有针对性和目的性。
考研数学各题型失分原因及解决法 填空题
填空题比较多的是考察基本运算和基本概念,或者说填空题比较多的是计算,同学丢分的主要原因是,运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。
从这个意义上讲,填空题对我们同学来讲应该是非常残酷的一个事情。那么,怎么来提高运算准确率呢?这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不能光看会,就不去算,很多的同学看会在草稿纸上画两下,没有认真地算。平时没有算过一定量的题,考试的时候就容易错,这就要求我们平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。
填空题里面本身有一些特殊的方法和技巧,同学做这种题还是按照常规,有的时候方法不当,本来很简单的题做成了很复杂的题,有些题可以根据几何意义,结果一眼就看出来了,有些题是根据一些特殊的性质,有的同学习惯做填空题还是按照常规的主观题的方法去做,对一些特殊方法和技巧不了解。我们在强化班讲课的时候,有意识跟同学做了归纳总结,听过课的同学对这个问题都应该有个总体的了解,这些方面应该是有帮助的。
选择题
选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。 这个地方丢分的原因主要是三个方面。第一个方面我们同学学数学,一个薄弱环节就是这个地方的基本概念和基本理论比较强势的是计算题,喜欢做计算题,相对来说计算题也比较扎实,薄弱环节就是概念和理论,这个本身是我们的薄弱环节。第二个原因,选择题里面确实有些题是有相当难度的,本身有难度,不是