好文档 - 专业文书写作范文服务资料分享网站

PID控制器设计

天下 分享 时间: 加入收藏 我要投稿 点赞

PID控制器设计

一、 PID控制的基本原理和常用形式及数学模型

具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为:

de(t)m(t)?Kpe(t)?KpKi?e(t)dt?KpKd (1-1) 0dtt相应的传递函数为:

?

Kp?2SKi?KdS?1S (1-2)

PID控制的结构图为: 若4?Ti?1,式(1-2)可以写成:

由此可见,当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使积分部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使微分部分发生在系统频率特性的中频段,以改善系统的动态性能。 二、 实验内容一:

自己选定一个具体的控制对象(Plant),分别用P、PD、PI、PID几种控制方式设计校正网络(Compensators),手工调试P、I、D各个参数,使闭环系统的阶跃响应(Response to Step Command)尽可能地好(稳定性、快速性、准确性)

控制对象(Plant)的数学模型: 法

不加任何串联校正的系统阶跃响应: (1) P控制方式:

P控制方式只是在前向通道上加上比例环节,相当于增大了系统的开环增益,减小了系统的稳态误差,减小了系统的阻尼,从而增大了系统的超调量和振荡性。

P控制方式的系统结构图如下:

取Kp=1至

15,步长为1,进行循环测试系统,将不同Kp下的阶跃响应曲线绘制在一张坐标图下:

MATLAB源程序: %对于P控制的编程实现 clear; d=[2]; n=[1 3 2]; t=[0:0.01:10]; for Kp=1:1:15

d1=Kp*d; g0=tf(d1,n);

实验1中,我使用MATLAB软件中的Simulink调试和编程调试相结合的方

g=feedback(g0,1); y=step(g,t); plot(t,y);

if ishold~=1 ,hold on,end end grid

由实验曲线可以看出,随着Kp值的增大,系统的稳态误差逐渐减小,稳态性

能得到很好的改善,但是,Kp的增大,使系统的超调量同时增加,系统的动态性能变差,稳定性下降。这就是P控制的一般规律。

由于曲线过于密集,我将程序稍做修改,使其仅仅显示出当系统稳态误差小于10%的最小Kp值 ,并算出此时系统的稳态值和超调量。 新的程序为:

%修改后对于P控制的编程实现 clear; d=[2]; n=[1 3 2]; t=[0:0.01:10]; for Kp=1:1:15

d1=Kp*d; g0=tf(d1,n); g=feedback(g0,1); y=step(g,t);

plot(t,y); dc=dcgain(g) if dc>0.9,

plot(t,y),disp(Kp),disp(dc),break,end;%显示出稳态误差小于10%的最小Kp值,并算出稳态值

if ishold~=1 ,hold on,end end grid

Kp=10时系统的阶跃响应

我们就采用使系统稳态误差小于10%的最小Kp值10,并计算出此时系统的超调量为34.6%,稳态误差为1-0.9091=0.0909。这些结果是我们能接受的。 (2)PD控制方式

PD控制方式是在P控制的基础上增加了微分环节,由图可见,系统的输出量同时受到误差信号及其速率的双重作用。因而,比例—微分控制是一种早期控制,

可在出现误差位置前,提前产生修正作用,从而达到改善系统性能的目的。

控制系统的传递函数为:

PD、控制框保持Kp=10不变,调试取Kd=11.5、2时的系统阶跃响应曲线并与P控制做比较:

MATLAB源程序为:

%编程实现PD控制与P控制的比较 clear;

t=[0:0.01:10]; d0=[20]; n=[1 3 2]; s0=tf(d0,n); s=feedback(s0,1); k=step(s,t); plot(t,k); Kp=10;

if ishold~=1,hold on,end; for Kd=1:0.5:2

d=[2*Kd*Kp,2*Kp]; g0=tf(d,n);

PID控制器设计

PID控制器设计一、PID控制的基本原理和常用形式及数学模型具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为:de(t)m(t)?Kpe(t)?KpKi?e(t)dt?KpKd(1-1)0dtt相应的传递函数为:?Kp?2SKi?KdS?1S
推荐度:
点击下载文档文档为doc格式
0cgy83njhq3gzju6vsv034ka295j7z00cui
领取福利

微信扫码领取福利

微信扫码分享