好文档 - 专业文书写作范文服务资料分享网站

三年级下册数学试题-奥数专题讲练:第9讲 数列规律精英篇(解析版)全国通用

天下 分享 时间: 加入收藏 我要投稿 点赞

第九讲 数列规律

教学目标

在今天这节课中,我们将来研究数列问题.教师通过示例引导学生正确认识数列,并且帮助学生掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力. 知识点 1、掌握一些常见的数列的规律.

2、掌握一些特殊数列的规律,并熟练应用规律解决问题. 3、理解掌握运用数列规律解决数阵问题.

很久很久以前,阿拉伯世界里流传着这样一

想道很有名的题目:一对兔子每月能生一对小兔,而

每对小兔在出生后的第三个月就能开始生小兔,如 挑果兔子是长生不老的,由一对刚出生的小兔开始, 战第十个月会有多少只兔子? 吗

分析:第一个月兔子数目为: 1,第二个月兔子仍不可以生小兔,所以兔子数目为1对,第三个月老兔子开始可以生小兔子,兔子数目为2对,第四个月兔子数目为3对,第五个月为5对,第六个月为8对,第七个月为13对……将这些数排成一列为:1,1,2,3,5,8,13…通过观察,可以发现,从第三个数开始,每个数等于它前面的两个数的和.即:2=1+1,3=1+2,5=2+3,所以,第十个月兔子的对数等于数列中第八个数加上第九个数,第十个月兔子对数为:21+34=55对.

专题精讲

日常生活中,我们经常接触到许多按一定顺序排列的数,如: (1)自然数:1,2,3,4,5,6,7,… (1)

(2)年份:1990,1991,1992,1993,1994,1995,1996

(3)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45

像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项是45.

根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列.

(一) 找数列中的规律

【例1】 观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.

(1) 100,88,76,64,52,( ),28

(2) 1,3,6,10,(),21,28,36,() (3) 2,1,3,4,7,( ),18,29,47 (4) 1,3,9,27,(),243

(5) 1,8,27,64,125,( ),343 (6) 1,2,6,24,120,(),5040

(7) 2, 1, 4, 3, 6, 9, 8, 27, 10,( ) (8) 1,1,1,3,5,9,17,()

分析:(1) 100,88,76,64,52,( ),28

通过观察不难发现,从第2项开始,每一项都比它前面一项少12,也就是说每相邻两项所得的差都等于12.因此,括号中应填的数是40,即:52-12=40.

像(1)这样,相邻两项之间的差是定值,我们把这样的数列叫做等差数列.

(2) 1,3,6,10,(),21,28,36,()

(方法一)先计算相邻两数的差,有:3-1=2,6-3=3,10-6=4 ,……,28-21=7,36-28=8,……

由此可以推知这些差一次为2、3、4、5、6…… ,所以这列数从小到大地排列规律是相邻两数的差按2、3、4、5、6……增加,括号里应填15,45,即10+5=15,36+9=45. (方法二)继续考察相邻项之间的关系,可以发现:

因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确. (方法三)这一列数还有如下的规律:第1项:1=1,第2项:3=1+2,第3项:6=1+2+3,第4项:10=1+2+3+4,

第6项:21=1+2+3+4+5+6,……

即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第5项为15,即:15=1+2+3+4+5;第9项为45,即:45=1+2+3+4+5+6+7+8+9.

(3) 2,1,3,4,7,( ),18,29,47

这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项地和,即:3=1+2,4=1+3,7=3+4,……,47=18+29,所以括号中的数应该是:4+7=11

(4) 1,3,9,27,(),243

此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3, 27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填 81,即 81= 27×3,代入后, 243也符合规律,即 243=81×3.

像(4)这样,相邻两项之间的商是定值,我们把这样的数列叫做等比数列.

(5)1,8,27,64,125,( ),343

通过观察可以发现: 1=1×1×1,8=2×2×2,27=3×3×3,64=4×4×4,125=5×5×5,343=7×7×7,根据这个规律,括号中应填:6×6×6=216

我们把这样的数列叫做立方数列,即每一项等于其项数乘以项数再乘以项数.

(6)1,2,6,24,120,(),5040

(方法一)这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:

所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6.

(方法二)本题也可以考虑连续自然数,显然:第1项 1=1,第2项 2=1×2,第3项 6=1×2×3,第4项 24=1×2×3×4,……,所以,第6项应为 1×2×3×4×5×6=720

(7) 2, 1, 4, 3, 6, 9, 8, 27, 10,( )。

分析:通过观察发现,前面的方法都不适用于这个数列,但是如果隔着看这个数列中的一些数是非常有规律的,如:3,8,13,18,而他们恰好是第一项、第三项、第五项、第七项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:把数列分为奇、偶项:

偶数项:2,4,6,8,10

奇数项:1,3,9,27,( ).

所以,偶数项为等差数列,奇数项为等比数列,括号中应填81(81=27×3).

像这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列.

(8) 1,1,1,3,5,9,17,()

可以发现, 3=1+1+1,5=1+1+3,9=1+3+5,从第四个数起,每一个数都等于前三个数的和,可知需填补的数字为: 5+9+17=31 , 9+17+31=57

本题考虑的是相邻四个数的直接关系,这一类题都是考虑后面一个数字与前面几个数字地共同关系,由于前面几个数字可以进行的运算方式有很多,所以这种题型的变化方式也很多.

【例2】 观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数. (1)4+2,5+8,6+14,7+20,( ),……

(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),( ) (3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,( )

分析:(1)4+2,5+8,6+14,7+20,( ),……

这排加法算式,前面一个数构成数列:4,5,6,7,……;后一个数构成数列:2,8,14,20,……. 对于数列4,5,6,7,……,由观察得知,第2项等于第1项加上1,第3项等于第1项加上2,第4项等于第1项加上3,……,所以第5项等于第1项加上4,即

4+4=8. 同理,数列:2,8,14,20,……,第2项等于第1项加上1×6,第3项等于第1项加上2×6,第4项等于第1项加上3×6,……,所以第5项等于第1项加上4×6,即2+4×6=26. 所以,括号里应填8+26.

(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),( ) 观察这个数列中每一组中对应位置上的数字,可以得到如下规律: 每组第一个是1、2、3、4、......这是一个自然数列, 第二个是2、4、8、16、......,这是一个等比数列,

第三个100、90、80、70......,这是一个递减的等差数列;

所以,第5组中的数应该是:5,16×2,70-10,即第五组的括号中应填(5,32,60).

(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,( )

这是一排乘法算式,观察可以发现,前面一个数的规律是:1,2,1,2,1,2,1……;后一个数的规律是:3,2,1,3,2,1,3,……,对于第一个数列,是由1、2两个数字循环组成的,所以第八项应为2;对于第二个数列,是由3、2、1循环组成的,所以第八项的第二个数字应为2.所以,括号里应填2×2.

【例3】 建筑工人将一堆木头堆成如图的形状,你知道如果按这样的方法堆木头,一共堆15层的话,第15层有多少根?

分析:通过观察这堆木头可以发现,最上面的一层有1根木头,第二层有2根,第三层有3根,第四层有4根,……我们可以将这道题转化一下,有一组数:1,2,3,4,5,6,……问第十五层有多少根,也就是求这组数中第十五个数是什

么,通过我们刚刚学过的我们知道,这是一个等差数列,第十五项为15,也就是第十五层有15根木头.

[拓展]小海喜欢收集小木棒,并将它们按下图的形状摆放在书桌上,最底下一层小海摆放了27根小木棍,接着摆放了26根,以此类推,到最后小海发现最上面一层只放了3根小木棒后就没有了,你知道小海一共收集了多少根小木棒吗?

分析:通过读题我们知道,小海的这堆小木棒摆放有一定的规律:第一层:3,第

二层:4,第三层:5,第四层:6,……,最后一层:27,通过观察可以得出,这一列数构成等差数列,问小海一共有多少小木棒,也就是将每层小木棒的数目加起来的和,即:3+4+5+6+7+8+9+10+11+…+25+26+27=(27+3)+(26+4)+……+(16+14)+15=30×12+15=375,所以,小海一共收集了375根小木棒.

【例4】 下面的各算式是按规律排列的:

1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是2008?

分析:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数. 因为2008是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为2008-1=2007,2007是第(2007+1)÷2=1004项,而数字1始终是奇数项,两者不符, 所以这个算式是3+2005=2008,是(2005+1)÷2=1003个算式.

[拓展]观察下面的算式:4×2,5×4,6×6,4×8,5×10,6×12,4×14,5×16,……其中第多少个算式的结果是2008?

分析:每个式子都是两个数相乘,第一个数是4、5、6的循环,第二个数是从2开始的连续偶数.因为2008只能被4整除,所以第一个数只能是4,2008÷4=502,所以第二个数是502,502是第502÷2=251项,所以2008是第251个算式的结果.

(二)特殊数列中的规律

【例5】 仔细观察下面的数表,找出规律,然后补填出空缺的数字.

(1)

6393(2)

84257964?57?519

2865674911182010()1012

分析:(1)通过观察前两个三角形中的数,可以发现:39=(3+4+6)×3,57=(2+8+9)×3,即中间数= 周围三数之和×3,所以第三个三角形最中间的数应为:(5+6+4)×3=45,最后一个三角形中要填地数为51÷3-(7+9)=1.

(2)这个数表的规律是:第二行的数等于相应的第三行的数与第一行的数的差的2倍.即:8=2×(6—2),10=2×(10—5),4=2×(9—7),18=2×(20—11).因此,括号内填12.

[拓展]表1、表2是按同一规律排列的两个方格表.那么表2方格中应填的数是多少?

分析:从表1的行与列两个方面寻找填数的规律,从24=4×6可得,第一行最左边的数等于其余两数的乘积,第一列最上面的数等于其余两数的乘积;从4=2+2,6=2+4可得,第二行最左

边的数等于其余两数的和,第二列最上面的数等于其余两数的和;从6=4+2,4=2+2可得,第三行、第三列的规律与第二行、第二列相同,根据这一规律,可得“?”处应填3(5-2=3).

a【例6】 右图中各个数之间存在着某种关系.请按照这一关系求出数a和b.

2016 1710分析:图中5个圆、10个数字,其中5个数字是只属于某一个圆本身的,5个

b15数字是每两个圆相重叠的公共区域的,观察发现:10+20=15×2,20+40=30

30×2,也就是说两圆重叠部分的公共区域的数字2倍,正好等于两圆独有数字之

2040和,所以,a=2×17-10=24,b=(16+40)÷2=28.最后验算一下:20×2-16=24,符合.

三年级下册数学试题-奥数专题讲练:第9讲 数列规律精英篇(解析版)全国通用

第九讲数列规律教学目标在今天这节课中,我们将来研究数列问题.教师通过示例引导学生正确认识数列,并且帮助学生掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力.知识点1、掌握一些常见的数列的规律.2、掌握一些特殊数列的规律,并熟练应用规律解决问题.
推荐度:
点击下载文档文档为doc格式
0cf5j874rs77t6k14pg60zn011oo6h01al7
领取福利

微信扫码领取福利

微信扫码分享