没有完美的人生,只有更多的经历!
愿你被温柔对待,愿你收获成长,愿你拥有智慧……^_^
6
第2讲 简便运算(一)
一、知识要点
根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练
【例题1】计算4.75-9.63+(8.25-1.37)
【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。所以
原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2
练习1:计算下面各题。
1、 6.73-2 又8/17+(3.27-1又9/17) 2. 7又5/9-(3.8+1又5/9)-1又1/5 3. 14.15-(7又7/8-6又17/20)-2.125 4. 13又7/13-(4又1/4+3又7/13)-0.75 【例题2】计算333387又1/2×79+790×66661又1/4
【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。所以:原式=333387.5×79+790×66661.25
=33338.75×790+790×66661.25 =(33338.75+66661.25)×790 =100000×790 =79000000
练习2:计算下面各题:
1. 3.5×1又1/4+125%+1又1/2÷4/5 2. 975×0.25+9又3/4×76-9.75 3. 9又2/5×425+4.25÷1/60 4. 0.9999×0.7+0.1111×2.7 【例题3】计算:36×1.09+1.2×67.3
【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。这
没有完美的人生,只有更多的经历!
愿你被温柔对待,愿你收获成长,愿你拥有智慧……^_^
样一转化,就可以运用乘法分配律了。所以
原式=1.2×30×1.09+1.2×67.3 =1.2×(30×1.09+1.2×67.3) =1.2×(32.7+67.3) =1.2×100 =120
练习3:计算: 1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×778 3. 48×1.08+1.2×56.8 4. 72×2.09-1.8×73.6
【例题4】计算:3又3/5×25又2/5+37.9×6又2/5
7
【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。当出现12.5×6.4时,我们又可以将6.4看成8×0.8,这样计算就简便多了。所以
原式=3又3/5×25又2/5+(25.4+12.5)×6.4 =3又3/5×25又2/5+25.4×6.4+12.5×6.4 =(3.6+6.4)×25.4+12.5×8×0.8 =254+80 =334 练习4: 计算下面各题:
1、6.8×16.8+19.3×3.2 2、139×137/138+137×1/138 3、4.4×57.8+45.3×5.6
【例题5】计算81.5×15.8+81.5×51.8+67.6×18.5
【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。所以 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6
没有完美的人生,只有更多的经历!
愿你被温柔对待,愿你收获成长,愿你拥有智慧……^_^
=6760 练习5:
1、53.5×35.3+53.5×43.2+78.5×46.5 2、235×12.1++235×42.2-135×54.3 3、3.75×735-3/8×5730+16.2×62.5
8
没有完美的人生,只有更多的经历!
愿你被温柔对待,愿你收获成长,愿你拥有智慧……^_^
9
第3讲 简便运算(二)
一、知识要点
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
二、精讲精练
【例题1】计算:1234+2341+3412+4123
【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有
原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110 练习1:
1、23456+34562+45623+56234+62345 2、45678+56784+67845+78456+84567 3、124.68+324.68+524.68+724.68+924.68
【例题2】计算:2又4/5×23.4+11.1×57.6+6.54×28
【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。所以
原式=2.8×23.4+2.8×65.4+11.1×8×7.2 =2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888
练习2:计算下面各题: 1、99999×77778+33333×66666 2、34.5×76.5-345×6.42-123×1.45 3、77×13+255×999+510
【例题3】计算(1993×1994-1)/(1993+1992×1994)
【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分
没有完美的人生,只有更多的经历!
愿你被温柔对待,愿你收获成长,愿你拥有智慧……^_^
母相同,从而简化运算。所以
原式=【(1992+1)×1994-1】/(1993+1992×1994) =(1992×1994+1994-1)/(1993+1992×1994) =1
练习3:计算下面各题:
1、(362+548×361)/(362×548-186) 2、(1988+1989×1987)/(1988×1989-1) 3、(204+584×1991)/(1992×584―380)―1/143
10
【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?
【思路导航】这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即
20012-20002
=2001×2000-20002+2001 =2000×(2001-2000)+2001 =2000+2001 =4001 练习4:计算:
1、19912-19902 2、99992+19999 3、999×274+6274 【例题5】计算:(9又2/7+7又2/9)÷(5/7+5/9)
【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多。
原式=(65/7+65/9)÷(5/7+5/9) =【65×(1/7+1/9)】÷【5×(1/7+1/9)】 =65÷5 =13 练习5: 计算下面各题:
1、(8/9+1又3/7+6/11)÷(3/11+5/7+4/9) 2、(3又7/11+1又12/13)÷(1又5/11+10/13)
3、(96又63/73+36又24/25)÷(32又21/73+12又8/25)