凯程考研辅导班,中国最权威的考研辅导机构 2024考研线代重点解读:高斯消元法求
解线性方程组
解线性方程组是线性代数的复习重点,高斯消元法是最基础和最直接的求解线性方程组的方 法,2024考生必须要掌握,下面我们就具体来谈谈如何把这部分的基础打好。
线性方程组的三种形式包括原始形式、 矩阵形式、向量形式,高斯消元法是最基础和最
直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1) 把某个方程的k倍加到另外一个方程上去;
(2) 交换某两个方程的位置;
(3) 用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
因此在求解线性方程组时只需对系数矩阵和增广矩阵进行初等变换。
高斯消元法中对线性方程组的初等变换, 就对应的是矩阵的初等行变换。阶梯形方程组,
对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换 化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主
元。对不同的线性方程组的具体求解结果进行归纳总结 经过严格证明,可得到关于线性方程组解的判别定理: 梯形,若得到的阶梯形方程组中出现 方程组有解;在方程组有解的情况下, 唯一解,若r
在利用初等变换得到阶梯型后, 还可进一步得到最简形, 0=d这一项,则方程组无解,若未出现 0=d —项,则主元上方的元素也全为零, 这对于求解未知量的值更加方便, 初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,
齐次方程组必有零解。齐次方程组的方程组
以及能
使用最简形,最简形的特点是 但代价是之前需要经过更多的
(有唯一解、无解、有无穷多解 ),再
首先是通过初等变换将方程组化为阶
若阶梯形的非零行数目 r等于未知量数目n,方程组有
个数若小于未知量个数,则方程组一定有非零解。利用高斯消元法和解的判别定理,
够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,利用高斯消兀法和解的判 别定理,以及能够回答前述的基本问题
性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解, 这种按特定规则表示的系数组合称为一个线性方程组
(1)解的存在性问题和(2)如何求解的问题,这是以线
(或矩阵)的行列式。行列式的特点:有
n!项,每项的符号由角标排列的逆序数决定,是一个数。
凯程考研辅导班,中国最权威的考研辅导机构 通过对行列式进行研究,得到了行列式具有的一些性质 行对应成比例其值为零、可按行展开等等
(如交换某两行其值反号、有两
),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断 n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的 一部分内容。
2024考研线代重点解读:高斯消元法求解线性方程组 - 图文
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)