好文档 - 专业文书写作范文服务资料分享网站

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

天下 分享 时间: 加入收藏 我要投稿 点赞

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解

一、高考物理精讲专题带电粒子在电场中的运动

1.如图所示,EF与GH间为一无场区.无场区左侧A、B为相距为d、板长为L的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A为正极板.无场区右侧为一点电荷Q形成的电场,点电荷的位置O为圆弧形细圆管CD的圆心,圆弧半径为R,圆心角为120°,O、C在两板间的中心线上,D位于GH上.一个质量为m、电荷量为q的带正电粒子以初速度v0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:

(1)O处点电荷的电性和电荷量; (2)两金属板间所加的电压.

224mv0R3mdv0【答案】(1)负电,;(2) 3kq3qL【解析】

(1)粒子进入圆管后受到点电荷Q的库仑力作匀速圆周运动,粒子带正电,则知O处点电荷带负电.由几何关系知,粒子在D点速度方向与水平方向夹角为30°,进入D点时速度为:v?v023?v0 …①

cos30?3

Qqv2…② 在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q带负电且满足k2?mRR4mv02R 由①②得:Q?3kq(2)粒子射出电场时速度方向与水平方向成30°

vy tan 30°= …③ v0vy=at…④

a?t?qU …⑤ mdL …⑥ v0mdv02tan30?3mdv02 ?由③④⑤⑥得:U?qL3qL

2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M内有竖直向下的匀强电场,电场场强E=1.0×103V/m,宽度d=0.05m,长度L=0.40m;区域MM′N′N内有垂直纸面向里

的匀强磁场,磁感应强度B=2.5×102T,宽度D=0.05m,比荷

q=1.0×108C/kg的带正电m的粒子以水平初速度v0从P点射入电场.边界MM′不影响粒子的运动,不计粒子重力.

(1) 若v0=8.0×105m/s,求粒子从区域PP′N′N射出的位置;

(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v0的大小; (3) 若粒子从M′点射出,求v0满足的条件.

【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v0=(0、1、2、3、4)第二种情况:v0=(【解析】 【详解】

(1) 粒子以水平初速度从P点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则

4.0?0.8n)?105m/s (其中n=

2n?13.2?0.8n)?105m/s (其中n=0、1、2、3).

2n?1t 竖直方向d=··得t?1Eq2m22md qE代入数据解得t=1.0×10-6s 水平位移x=v0t

代入数据解得x=0.80m

因为x大于L,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t0=

L=0.5×10-6s, v02t0=0.0125m 竖直位移y=··所以粒子从P′点下方0.0125m处射出.

(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x=v0 粒子进入磁场时,垂直边界的速度 v1=

1Eq2m2md qEqE2qEd·t= mm

设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v=

v1 sin?mvv2qvBmR 在磁场中由=得=

qBR粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x+Rsinα=L 把x=v0mvv2md2qEd 代入解得 、R=、v=1、v1=qBsin?qEmEEq- B2mdv0=L·v0=3.6×105m/s.

(3) 由第二问解答的图可知粒子离MM′的最远距离Δy=R-Rcosα=R(1-cosα)

mvv2qEd把R=、v=1、v1=代入解得

qBsin?m?y?12mEd(1?cos?)12mEd??tan

Bqsin?Bq2可以看出当α=90°时,Δy有最大值,(α=90°即粒子从P点射入电场的速度为零,直接在电场中加速后以v1的速度垂直MM′进入磁场运动半个圆周回到电场)

?ymax?mv1m2qEd12mEd ??qBqBmBqΔymax=0.04m,Δymax小于磁场宽度D,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.

若粒子速度较小,周期性运动的轨迹如下图所示:

粒子要从M′点射出边界有两种情况, 第一种情况: L=n(2v0t+2Rsinα)+v0t 把t?mv2md2qEdR 、v1=vsinα、v1= 代入解得 、=

qBqEmv0?LqE2nE??

2n?12md2n?1Bv0=??4.0?0.8n?5

?×10m/s(其中n=0、1、2、3、4)

?2n?1?第二种情况:

L=n(2v0t+2Rsinα)+v0t+2Rsinα 把t?mv2md2qEd 、R=、v1=vsinα、v1=代入解得

qBqEmv0?LqE2(n?1)E??

2n?12md2n?1Bv0=??3.2?0.8n?5

?×10m/s(其中n=0、1、2、3).

?2n?1?

3.如图甲所示,极板A、B间电压为U0,极板C、D间距为d,荧光屏到C、D板右端的距离等于C、D板的板长.A板O处的放射源连续无初速地释放质量为m、电荷量为+q的粒子,经电场加速后,沿极板C、D的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C、D板间未加电压时,粒子通过两板间的时间为t0;当C、D板间加上图乙所示电压(图中电压U1已知)时,粒子均能从C、D两板间飞出,不计粒子的重力及相互间的作用.求:

(1)C、D板的长度L;

(2)粒子从C、D板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)L?t0【解析】

试题分析:(1)粒子在A、B板间有qU0?在C、D板间有L?v0t0 解得:L?t0222qU0qU1t03qU1t0(2)y?(3)?s?s? m2md2md12mv0 22qU0 m(2)粒子从nt0(n=0、2、4……)时刻进入C、D间,偏移距离最大 粒子做类平抛运动 偏移距离y?加速度a?12at0 2qU1 md2qU1t0得:y?

2md(3)粒子在C、D间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C、D板偏转角tan??vyv0

vy?at0

打在荧光屏上距中心线最远距离s?y?Ltan?

23qU1t0荧光屏上区域长度?s?s?

2md考点:带电粒子在匀强电场中的运动

【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.

4.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外

的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x

(1)求电场强度大小E;

(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;

(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.

2?L4nmv0mv0(2)B?n=1、2、3......(3)t?【答案】(1)E?

2v0qLqL【解析】

本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.

(1)带电粒子在电场中做类平抛运动有: L?v0t,

2mv0联立解得: E?

qLL12?at,qE?ma 22(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan??速度大小v?vx=l vyv0?2v0 sin?设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为L=(2n+1)x时,粒子轨迹如图乙所示.

?;当满足2

若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为联立可得:R??.则有x=2R,此时满足L=2nx 2L 22nv2由牛顿第二定律,洛伦兹力提供向心力,则有:qvB?m

R得:B?4nmv0,n=1、2、3.... qL轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为

?.则有x2?2R2,此时满足2L??2n?1?x2

联立可得:R2?L

?2n?1?2v2由牛顿第二定律,洛伦兹力提供向心力,则有:qvB2?m

R2得:B2?2?2n?1?mv0qL,n=1、2、3....

所以为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B?4nmv02?2n?1?mv0,n=1、2、3....或B2?,n=1、2、3.... qLqL(3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=2n×

2n?2n?m?L???×2=2nπ,则t?T?

2?qB2v02若轨迹如图乙,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则t2?T2?(4n?2)?(4n?2)?m?L?? 2?qB2v02n?2n?m?L??或2?qB2v0粒子从进入磁场到坐标(-L,0)点所用的时间为t?T?t2?T2?(4n?2)?(4n?2)?m?L?? 2?qB2v0

5.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v的大小;

(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标: (3)N板收集到的粒子占所有发射粒子的比例η.

q=108C/kg、不计粒子间的相互作用力及电场的m

【答案】(1)6×105m/s;(2)(0,0.18m);(3)29% 【解析】 【详解】

v2(1)由洛伦兹力充当向心力,即qvB=m

R0可得:v=6×105m/s;

(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=

0.06=0.08m,即Q为轨迹圆心的位置; cos37o0.06=0.08m,故粒子刚好从圆上y轴最高点离开; sin37oQ到圆上y轴最高点的距离为0.18m-

故它打出磁场时的坐标为(0,0.18m);

(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得: y=a=t=

12

at…① 2qEqU=…② mmdL…③ v由①②③解得:y=0.08m

设此粒子射入时与x轴的夹角为α,则由几何知识得:y=rsinα+R0-R0cosα 可知tanα=比例η=

4,即α=53° 353?×100%=29% o180

6.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。

(1)求粒子经过原点时的速度; (2)求磁感应强度B的所有可能取值

(3)求粒子从出发直至到达P点经历时间的所有可能取值。

【答案】(1)粒子经过原点时的速度大小为2v0,方向:与x轴正方向夹45°斜向下; (2)磁感应强度B的所有可能取值:B?nmv0 n=1、2、3……; qL2a?m3?m?k?(k?1) v02qB4qB(3)粒子从出发直至到达P点经历时间的所有可能取值:t?k=1、2、3……或t?【解析】 【详解】

2a?m3?m?n?n n=1、2、3……。 v02qB4qB(1)粒子在电场中做类平抛运动,水平方向:2a=v0t, 竖直方向:a?vy2t ,

解得:vy=v0,tanθ=

vyv0=1,θ=45°,

2粒子穿过O点时的速度:v?v0?v2?2v0;

(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:

v2qvB?m ,

r粒子能过P点,由几何知识得:L=nrcos45° n=1、2、3……, 解得:B?nmv0 n=1、2、3……; qL2a; v0(3)设粒子在第二象限运动时间为t1,则:t1=

粒子在第四、第一象限内做圆周运动的周期:T1?2?m?m,T2?, qBqB粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P点,则粒子在磁场中的运动时间:t2=

1T1, 4若粒子经过下方磁场与上方磁场到达P点,粒子在磁场中的运动时间:t2=若粒子两次经过下方磁场一次经过上方磁场到达P点:t2=2×

31T1+T2, 4431T1+T2, 4431T1+2×T2, 44若粒子两次经过下方磁场、两次经过上方磁场到达P点:t2=2×………… 则t2?k或t2?n?m2qB?(k?1)?n3?m k=1、2、3…… 4qB?m2qB3?m n=1、2、3…… 4qB粒子从出发到P点经过的时间:t=t1+t2, 解得:t?或t?2a?m3?m?k?(k?1) k=1、2、3…… v02qB4qB2a?m3?m?n?n n=1、2、3……; v02qB4qB

7.能量守恒是自然界基本规律,能量转化通过做功实现。如图所示,平行板电容器水平放置,上板正中央有一小孔,两极板间的距离为d,电势差为U。一质量为m、带电量为+q的小球从小孔正上方某处由静止开始下落,穿过小孔到达下极板处速度恰为零。重力加速度为g(空气阻力忽略不计)。求:小球释放位置距离上极板的高度h。

【答案】【解析】 【详解】

qU?d mg小球首先自由落体,进入两极板后开始减速,到下极板时减速为零,对整个过程列动能定理有:W电+W重=△Ek 即:-qU+mg(h+d)=0-0 得 h=

qU?d mg

8.如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零。空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g。求:

(1)小球到达小孔处的速度大小;

(2)极板间电场强度大小和电容器所带电荷量;

(3)小球从开始下落运动到下极板,其所受重力的冲量大小。

Cmg(h?d)h?d (3)mg【答案】(1)2gh (2)

qh【解析】 【详解】

(1) 根据机械能守恒,有mgh?解得v0?2gh

2h g1mv02 2(2)对小球运动的全过程,根据动能定理mg?h?d??qEd?0 解得E?mg?h?d?qd

电容器所带电荷量Q?CU,U=Ed 解得Q?Cmg?h?d?q

h?d

v0t?

v0 (3)小球全程运动的平均速度为,则小球全程运动的时间为t,

22

解得t?h?dh2h g小球所受重力的冲量大小为I?mgt?mgh?dh2h g

9.如图,光滑水平面上静置质量为m,长为L的绝缘板a,绝缘板右端园定有竖直挡板,整个装置置于水平向右的匀强电场中.现将一质量也为m、带电量为q(q>0)的物块b置于绝缘板左端(b可视为质点且初速度为零),已知匀强电场的场强大小为E=3μmg/q,物块与绝缘板板间动摩擦数为μ(设最大静摩擦力等于滑动摩擦力),物块与绝缘板右端竖直挡板碰撞后a、b速度交换,且碰撞时间极短可忽略不计,物块带电量始终保持不变,重力加速度为g。求:

(1)物块第一次与挡板碰撞前瞬间物块的速度大小;

(2)物块从置于绝缘板到第二次与挡板碰撞过程中,电场力所做的功W。 【答案】(1) 22?gL (2) 【解析】

3(74?185)?mgL

25【分析】

(1)根据同向运动的物体位移之差等于相对位移,牛顿第二定律结合运动学公式求解. (2)碰撞过程满足动量守恒,往返运动再次碰撞的过程依然用牛顿第二定律结合运动学公式求解位移;恒力做功由功的定义式处理. 【详解】

(1)由题知:物块b受恒定电场力F?3?mg

对两物体由牛顿第二定律,物块b:F??mg?ma1,得a1?2?g 对绝缘板a:?mg?ma2,得a2??g 设历时t1物块第一次与挡板碰撞,有:

12L(a1?a2)t12=L,得:t1? 2?g则物块第一次与挡板碰撞前瞬时,物块的速度大小v1?a1t1 解得:v1?22?gL (2)绝缘板a的速度大小v2?a2t1,解得:v2?2?gL 物块对地的位移大小为x1?12a1t1,有x1?2L 2物块与绝缘板的右端竖直挡板发生弹性碰撞后,二者速度交换

??2?gL,绝缘板的速度大小为v2??22?gL 则物块的速度为v1对物块b:F??mg?ma3,有a3?4?g

??a3t2,v?v2??a2t2 设历时t2,二者达到共同速度v,有:v?v1解得:t2?912L v?2?gL 55?gL

5

??v1?)2?2(a3?a2)x,解得:x?二者相对位移大小为x,有(v2物块对地的位移大小为x2,有x2???v)(v114t2,解得:x2?L 22512L2(a1?a2)t3=x,得:t3? 25?g131852a1t3,解得:x3?L?L 2255设历时t3物块第二次与挡板碰撞,有:

物块对地的位移大小为x3,有x3?vt3?故物块的总位移x?x1?x2?x3 得:x?74?185L 253(74?185)?mgL

25根据功的定义W?3?mgx 解得:W?【点睛】

本题是牛顿第二定律、动量守恒定律、运动学公式和能量守恒定律的综合应用,按程序进行分析是基础.

10.如图所示,在光滑绝缘的水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B,A球的电荷量为+2q,B球的电荷量为-3q,组成一静止的带电系统。虚线NQ与MP平行且相距3L,开始时MP恰为杆的中垂线。视小球为质点,不计轻杆的质量,现在在虚线MP、NQ间加上水平向右的匀强电场E,求:

(1)B球刚进入电场时带电系统的速度大小;

(2)B球向右运动的最大位移以及从开始到最大位移处时B球电势能的变化量; (3)带电系统运动的周期。 【答案】(1)【解析】 【分析】

(1)对系统运用动能定理,根据动能定理求出B球刚进入电场时,带电系统的速度大小.

(2)带电系统经历了三个阶段:B球进入电场前、带电系统在电场中、A球出电场,根据动能定理求出A球离开PQ的最大位移,从而求出带电系统向右运动的最大距离.根据B球在电场中运动的位移,求出电场力做的功,从而确定B球电势能的变化量. (3)根据运动学公式和牛顿第二定律分别求出带电系统B球进入电场前做匀加速直线运动的时间,带电系统在电场中做匀减速直线运动的时间,A球出电场带电系统做匀减速直线运动的时间,从而求出带电系统从静止开始向右运动再次速度为零的时间,带电系统的运动周期为该时间的2倍. 【详解】

(1)设B球刚进入电场时带电系统速度为v1,由动能定理2qEL=×2mv12 解得

(2)

(3)

(2)带电系统向右运动分三段:B球进入电场前、带电系统在电场中、A球出电场. 设A球离开NQ的最大位移为x,由动能定理得2qEL-qEL-3qEx=0 解得x=;则s总=

B球从刚进入电场到带电系统从开始运动到速度第一次为零时位移为

其电势能的变化量为△EP=W=3qE?=4qEL

(3)向右运动分三段,取向右为正方向, 第一段加速第二段减速

设A球出电场电速度为v2,由动能定理得-qEL=解得则

第三段再减速则其加速度a3及时间t3为:所以带电系统运动的周期为:T=2(t1+t2+t3)=

11.如图所示,一个电子由静止开始经加速电场加速后,又沿中心轴线从O点垂直射入偏转电场,并从另一侧射出打到荧光屏上的P点,O′点为荧光屏的中心.已知电子质量m=9.0×10-31kg,电荷量大小e=1.6×10-19C,加速电场电压U0=2 500 V,偏转电场电压U=200 V,极板的长度L1=6.0 cm,板间距离d=2.0 cm,极板的末端到荧光屏的距离L2=3.0 cm(忽略电子所受重力,结果保留两位有效数字).求:

(1) 电子射入偏转电场时的初速度v0; (2) 电子打在荧光屏上的P点到O′点的距离h; (3) 电子经过偏转电场过程中电势能的增加量.

【答案】(1) v0=3.0×107m/s.(2) h=7.2×10-3m. (3) ΔE=-W=-5.8×10-18J. 【解析】 【分析】

(1)电子在加速电场中,根据动能定理即可求出进入偏转电场的速度;

(2)粒子在偏转电场中做类平抛运动,根据类平抛运动规律可求出粒子在偏转电场中产生的侧位移;粒子从偏转电场飞出至荧光屏这一过程,做的是匀速直线运动,根据几何关系即可求h;

(3)根据W=eEy即可求出电子经过偏转电场过程中电场力对它所做的功. 【详解】

(1) 电场中加速有eU0=解得v0=1mv02 22eU0 m代入数据解得v0=3.0×107m/s.

(2) 设电子在偏转电场中运动的时间为t,电子射出偏转电场时在竖直方向上的侧移量为y. 电子在水平方向做匀速直线运动,L1=v0t 电子在竖直方向上做匀加速运动,y=根据牛顿第二定律有

12at 2eU=ma d2eUL11.6?10?19?200?0.062m=3.6×10-3m=0.36cm =解得y=2?31722mdv02?9.0?10?0.02?(3.0?10)电子离开偏转电场时速度的反向延长线过偏转电场的中点,

L1y? 由图知

hL1?2L2解得h=7.2×10-3m.

(3) 电子在偏转电场运动的过程中电场力对它做的功

Uy=5.8×10-18J dΔE=-W=-5.8×10-18J. 【点睛】

W=eEy=e

对于带电粒子在电场中的运动问题,关键是注意区分不同的物理过程,弄清在不同的物理过程中物体的受力情况及运动性质,并选用相应的物理规律.在解决问题时,主要可以从两条线索展开:

其一,力和运动的关系.根据带电粒子受力情况,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度位移等.这条线索通常适用于在恒力作用下做匀变速运动的情况.

其二,功和能的关系.根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理研究全过程中能的转化,研究带电粒子的速度变化、位移等.这条线索不但适用于匀强电场,也适用于非匀强电场.

12.如图所示,带电荷量为+4×10-8C的滑块在电场强度大小为2×104N/C、方向水平向右的匀强电场中,沿光滑绝缘水平面由M点运动到N点.已知M、N间的距离为0.1 m.求:

(1)滑块所受电场力的大小; (2)M、N两点间的电势差; (3)电场力所做的功.

【答案】(1)8×10-4N (2)2×103V (3)8×10-5J 【解析】 【分析】

(1)在匀强电场中,根据F=qE直接计算电场力的大小; (2)根据U=Ed计算M、N两点间的电势差; (3)根据W=qU计算电场力所做的功. 【详解】

(1)滑块所受的电场力为: F=qE=4×10一8×2×104N=8×10-4N (2)M、N两点间的电势差为: UMN=Ed=2×104×0.1V=2×103V (3)电场力所做的功为: WMN=qUMN=4×10-8×2×103J=8×10-5J 【点睛】

本题是对电场的基本公式的考查,掌握住公式的使用条件,F=qE,U=Ed在匀强电场中才可以使用,W=qU任何电场都可以使用.

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,EF与GH间为一无场区.无场区左侧A、B为相距为d、板长为L的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A为正极板.无场区右侧为一点电荷Q形成的电场,点电荷的位置O为圆弧形细圆管
推荐度:
点击下载文档文档为doc格式
0bxdj5jm5k77t6k14pg60zn011onzd01agh
领取福利

微信扫码领取福利

微信扫码分享