小学六年级数学期末试卷:应用题综合训练
小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,查字典数学网为同学们特别提供了六年级数学期末试卷:应用题综合训练,希望对大家的学习有所帮助!
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是215086=25天 甲25天完成2425=600棵
那么乙就要完成900-600=300棵之后,才去帮丙 即做了30030=10天之后 即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草
第1页/共9页
=1030=300份
所以每亩面积原有草量和每亩面积30天长的草是3005=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=2845=1260份
所以每亩面积原有草量和每亩面积45天长的草是126015=84份
所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长2415=1.6份 所以,每亩原有草量60-301.6=12份
第三块地面积是24亩,所以每天要长1.624=38.4份,原有草就有2412=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此28880=3.6头牛 所以,一共需要38.4+3.6=42头牛来吃。 两种解法: 解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量
第2页/共9页
3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 甲乙合作一天完成12.4=5/12,支付18002.4=750元 乙丙合作一天完成1(3+3/4)=4/15,支付15004/15=400元 甲丙合作一天完成1(2+6/7)=7/20,支付16007/20=560元 三人合作一天完成(5/12+4/15+7/20)2=31/60, 三人合作一天支付(750+400+560)2=855元
甲单独做每天完成31/60-4/15=1/4,支付855-400=455元 乙单独做每天完成31/60-7/20=1/6,支付855-560=295元 丙单独做每天完成31/60-5/12=1/10,支付855-750=105元 所以通过比较
选择乙来做,在11/6=6天完工,且只用2956=1770元 4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分
第3页/共9页
钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的183=6倍
上面部分和下面部分的高度之比是(50-20):20=3:2 所以上面部分的底面积是下面部分装水的底面积的632=4倍 所以长方体的底面积和容器底面面积之比是(4-1):4=3:4 独特解法:
(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),
所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,
所以体积比就等于底面积之比,9:12=3:4
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
把甲的套数看作5份,乙的套数就是6份。
甲获得的利润是80%5=4份,乙获得的利润是50%6=3份 甲比乙多4-3=1份,这1份就是10套。 所以,甲原来购进了105=50套。
第4页/共9页
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 把一池水看作单位1。
由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。
甲管的注水速度是7/127/3=1/4,乙管的注水速度是1/45/7=5/28。
甲管后来的注水速度是1/4(1+25%)=5/16 用去的时间是5/125/16=4/3小时 乙管注满水池需要15/28=5.6小时 还需要注水5.6-7/3-4/3=29/15小时 即1小时56分钟 继续再做一种方法:
按照原来的注水速度,甲管注满水池的时间是7/37/12=4小时
乙管注满水池的时间是7/35/12=5.6小时 时间相差5.6-4=1.6小时
后来甲管速度提高,时间就更少了,相差的时间就更多了。 甲速度提高后,还要7/35/7=5/3小时
第5页/共9页