好文档 - 专业文书写作范文服务资料分享网站

exam12s经典教材《金融时间序列分析》Ruey S. Tsay 英文第三版2012年试题及答案高清版 

天下 分享 时间: 加入收藏 我要投稿 点赞

BoothSchoolofBusiness,UniversityofChicagoBusiness41202,SpringQuarter2012,Mr.RueyS.Tsay

SolutionstoMidterm

ProblemA:(34pts)Answerbrie?ythefollowingquestions.Eachquestionhastwopoints.

1.DescribetwoimprovementsoftheEGARCHmodelovertheGARCHvolatilitymodel.

Answer:(1)allowsforasymmetricresponsetopastpositiveornegativereturns,i.e.leveragee?ect,(2)useslogvolatilitytorelaxparameterconstraint.2.DescribetwomethodsthatcanbeusedtoinfertheexistenceofARCHe?ectsinareturnseries,i.e.,volatilityisnotconstantovertime.

Answer:(1)ThesampleACF(orPACF)ofthesquaredresidualsofthemeanequation,(2)usetheLjung-Boxstatisticsonthesquaredresiduals.

2

=3.ConsidertheIGARCH(1,1)volatilitymodel:at=σt??twithσt

22

α0+β1σt?1+(1?β1)at?1.Oftenonepre-?xesα0=0.Why?Also,supposethatα0=0andthe1-stepaheadvolatilitypredictionattheforecastoriginhis16.2%(annualized),i.e.,σh(1)=σh+1=16.2forthepercentagelogreturn.Whatisthe10-stepaheadvolatilityprediction?Thatis,whatisσh(10)?

Answer:(1)Fixingα0=0basedonthepriorknowledgethatvolatilityismeanreverting.(2)σh(10)=16.2.

4.(Questions4to8)ConsiderthedailylogreturnsofAmazonstockfromJanuary3,2007toApril27,2012.SomesummarystatisticsofthereturnsaregivenintheattachedRoutput.Istheexpected(mean)returnofthestockzero?Why?

Answer:Thedatadoesnotprovidesu?cientevidencetosuggestthatthemeanreturnisnotzero,becausethe95%con?denceintervalcon-tainszero.5.Letkbetheexcesskurtosis.TestH0:k=0versusHa:k=0.Writedowntheteststatisticanddrawtheconclusion.

1

Answer:t-ratio=√9.875

24/1340

=73.79,whichishighlysigni?cantcom-

paredwithχ21distribution.

6.Arethereserialcorrelationsinthelogreturns?Why?

Answer:No,theLjung-BoxstatisticQ(10)=10.69withp-value0.38.7.ArethereARCHe?ectsinthelogreturnseries?Why?

Answer:Yes,theLjung-BoxstatistofsquaredresidualsgivesQ(10)=39.24withp-valuelessthan0.05.8.Basedonthesummarystatisticsprovided,whatisthe22-stepaheadpointforecastofthelogreturnattheforecastoriginApril27,2012?Why?

Answer:ThepointforecastrT(22)=0becausethemeanisnotsignif-icantlydi?erentfromzero.[Givestudents1pointiftheyusesamplemean.]9.Givetworeasonsthatexplaintheexistenceofserialcorrelationsinob-servedassetreturnsevenifthetruereturnsarenotseriallycorrelated.Answer:Anytwoof(1)bid-askbounce,(2)nonsynchronoustrading,(3)dynamicdependenceofvolaitlityviariskpremuim.10.Givetworeasonsthatmayleadtousingmoving-averagemodelsin

analyzingassetreturns.

Answer:(1)Smoothing(ormanipulation),(2)bid-askbounceinhighfrequencyreturns.11.Describetwomethodsthatcanbeusedtocomparedi?erentmodels

foragiventimeseries.

Answer:(1)InformationcriteriasuchasAICorBIC,(2)backtestingorout-of-sampleforecasting.12.(Questions12to14)LetrtbethedailylogreturnsofStockA.

Assumethatrt=0.004+at,whereat=σt??twith??tbeingiidN(0,1)

2

randomvariatesandσt=0.017+0.15a2t?1.Whatistheunconditionalvarianceofat?

.017

=0.02.Answer:Var(at)=10

?0.1513.Supposethatthelogpriceatt=100is3.912.Also,attheforecast

origint=100,wehavea100=?0.03andσ100=0.025.Computethe

2

1-stepaheadforecastofthelogprice(notlogreturn)anditsvolatilityforStockAattheforecastorigint=100.Answer:r100(1)=0.??004sothat??p100(1)=3.912+0.004=3.916.The

2

(1)=0.017+0.15(?0.03)2=0.131.volatilityforecastisσ100

14.Computethe30-stepaheadforecastofthelogpriceanditsvolatility

ofStockAattheforecastorigint=100.Answer:p100(30)=3.912+0.√004×30=4.032andthevoaltilityistheunconditionalstantarderror0.02=0.141.15.Assetvolatilityhasmanyapplicationsin?nance.Describetwosuch

applications.

Answer:Anytwoof(1)pricingderivative,(2)riskmanagement,(3)assetallocation.16.SupposethelogreturnrtofStockAfollowsthemodelrt=at,at=σt??t,

22

=α0+α1a2andσtt?1+β1σt?1,where??tareiidN(0,1).Underwhat

conditionthatthekurtosisofrtis3?Thatis,statetheconditionunderwhichtheGARCHdynamicsfailtogenerateanyadditionalkurtosisoverthatof??t.Answer:α1=0.17.Whatisthemainconsequenceinusingalinearregressionanalysiswhen

theserialcorrelationsoftheresidualsareoverlooked?

Answer:Thet-ratiosofcoe?cientestimatesarenotreliable.ProblemB.(30pts)ConsiderthedailylogreturnsofAmazonstockfromJanuary3,2007toApril27,2012.Severalvolatilitymodelsare?ttedtothedataandtherelevantRoutputisattached.Answerthefollowingquestions.1.(2points)Avolatilitymodel,calledm1inR,isentertained.Writedownthe?ttedmodel,includingthemeanequation.Isthemodeladequate?Why?

Answer:ARCH(1)model.rt=0.0018+at,at=σt??twith??tbeingiid

2

N(0,1)andσt=7.577×10?4+0.188a2t?1.Themodelisinadequatebecausethenormalityassumptionisclearlyrejected.2.(3points)Anothervolatilitymodel,calledm2inR,is?ttedtothereturns.Writedownthemodel,includingallestimatedparameters.

3

Answer:ARCH(1)model.rt=4.907×10?4+at,at=σt??t,where??t~

?

t?3.56withtvdenotingstandardizedStudent-tdistributionwithvdegrees

2

offreedom.Thevolatilityequationisσt=7.463×10?4+0.203a2t?1.3.(2points)Basedonthe?ttedmodelm2,testH0:ν=5versusHa:ν=5,whereνdenotesthedegreesoffreedomofStudent-tdistribution.Performthetestanddrawaconclusion.

562?5

=?3.93,whichcomparedwith1.96ishighlyAnswer:t-ratio=3.0.366signi?cant.Ifyoucomputethep-value,itis8.53×10?5.Therefore,v=5isrejected.4.(3points)Athirdmodel,calledm3inR,isalsoentertained.Writedownthemodel,includingthedistributionalparameters.Isthemodeladequate?Why?

Answer:AnotherARCH(1)model.rt=0.0012+at,at=σt??t,where??tareiidandfollowaskewstandardizedStudent-tdistributionwithskewparameter1.065anddegreesoffreedom3.591.Thevolatilityequation

2isσt=7.418×10?4+0.208a2t?1.Eceptfortheinsigicantmeanvalue,the?ttedARCH(1)modelappearstobeadequatebasedonthemodelcheckingstatisticsshown.5.(2points)Letξbetheskewparameterinmodelm3.Doestheestimateofξcon?rmthatthedistributionofthelogreturnsisskewed?Why?Performthetesttosupportyouranswer.

065?1

=1.67,whichissmallerthan1.96.Thus,Answer:Thet-ratiois1.0.039thenullhypothesisofsymmetricinnovationscannotberejectedatthe5%level.6.(3points)Afourthmodel,calledm4inR,isalso?tted.Writedownthe?ttedmodel,includingthedistributionoftheinnovations.

Answer:aGARCH(1,1)model.rt=0.0017+at,at=σt??t,where??tareiidandfollowaskewstandardizedStudent-tdistributionwithskewparameter1.101anddegreesoffreedom3.71.Thevolatilityequation

22isσt=1.066×10?5+0.0414a2t?1+0.950σt?1.7.(2points)Basedonmodelm4,isthedistributionofthelogreturnsskewed?Why?Performatesttosupportyouranswer.

101?1

Answer:Thet-ratiois1.0=2.349,whichisgreaterthan1.96..043Thus,thedistributionisskewatthe5%level.

4

8.(2points)Amongmodelsm1,m2,m3,m4,whichmodelispreferred?Statethecriterionusedinyourchoice.

Answer:Model4ispreferredasithasasmallerAICvalue.?1isverycloseto1,weconsider9.(2points)Sincetheestimatesα?1+β

anIGARCH(1,1)model.Writedownthe?ttedIGARCH(1,1)model,calledm5.

22

Answer:rt=at,at=σt??t,whereσt=3.859×10?5+0.85σt?1+0.15a2t?1.10.(2points)UsetheIGARCH(1,1)modelandtheinformationprovidedtoobtain1-stepand2-stepaheadpredictionsforthevolatilityofthelogreturnsattheforecastorigint=1340.

22

Answer:Fromtheoutputσ1340(1)=σ1341=3.859×10?5+0.85×

2

(0.02108)2+0.15(.146)2=0.00361.Therefore,σ1340(2)=3.859×10?5+2

(1)=0.00365.Thevolatilityforecastsarethen0.0601and0.0604,σ1340

respectively.11.(2points)AGARCH-Mmodelisentertainedforthepercentagelog

returns,calledm6intheRoutput.Basedonthe?ttedmodel,istheriskpremiumstatisticalsigni?cant?Why?

Answer:Theriskpremiumparameteris?0.112witht-ratio?0.560,whichislessthan1.96inmodulus.Thus,theriskpremiumisnotstatisticalsigni?cantatthe5%level.12.(3points)Finally,aGJR-typemodelisentertained,calledm7.Write

downthe?ttedmodel,includingallparameters.

Answer:ThisisanAPARCHmodel.Themodelisrt=0.0014+at,at=σt??t,where??tareiidandfollowaskewstandardizedStudent-tdistributionwithskewparameter1.098anddegreesoffreedom3.846.Thevolatilityequationis

22σt=7.583×10?6+0.0362(|at?1|?0.478at?1)2+0.953σt?1.

13.(2points)Basedonthe?ttedGJR-typeofmodel,istheleveragee?ectsigni?cant?Why?

Answer:Yes,theleverageparameterγ1issign?icantlydi?erentfromzerosothatthereisleveragee?ectinthelogreturns.

5

exam12s经典教材《金融时间序列分析》Ruey S. Tsay 英文第三版2012年试题及答案高清版 

BoothSchoolofBusiness,UniversityofChicagoBusiness41202,SpringQuarter2012,Mr.RueyS.TsaySolutionstoMidtermProblemA:(34pts)Answerbrie?ythefollowingquestions.Eachquestionhastwopoints.
推荐度:
点击下载文档文档为doc格式
0bgcn6ccd5371qz5d0ci05ej21u0yu00k1l
领取福利

微信扫码领取福利

微信扫码分享