第二单元 位置
一、教学内容
用数对确定物体的位置。
本单元内容由原六年级上册移来。 二、教学目标
1.结合具体情境,让学生能用数对(正整数)表示物体的位置。 2. 让学生能在方格纸上用数对表示物体的位置。 3.让学生知道数对与方格纸上的点存在对应关系。 三、编排特点
本单元内容的编排是在学生一年级上册学习了用上、下、前、后、左、右确定位置,三年级下册学习了用东南西北等词语描述物体方向的基础上,进一步学习用数对确定物体的位置。也为后面进一步学习“根据方向和距离两个参数确定物体的位置”打下基础。编排上主要有以下几个特点。
1.从实际情境出发,帮助学生掌握用数对确定位置的方法。
学生在生活中已经能用“第几”描述物体的位置,还经历了类似用“第几排第几个”的方式找到物体的位置,如教室里的座位、电影院的座位等,初步具有用数表示位置的经验。教材充分利用并及时提升了学生的这些已有经验。例1通过呈现确定多媒体教室中学生的座位情境,引出本单元内容的学习,借助教师操作台上的学生座位图,迅速将实际的具体情境数学化,抽象成在平面图上确定位置,并帮助学生理解如何用数对确定位置的方法。
2.结合具体情境,初步感知直角坐标系的思想和方法。
结合熟悉的生活情境,让学生在具体情境中或方格纸上用抽象的数对表示物体的位置,初步感知直角坐标系的思想,为后面“图形与坐标”的学习作好铺垫。
例如,例1学生根据张亮坐在教室的第2列、第3行用数对(2,3)表示,初步建立与座位示意图的对应关系,在同样的规则下,再次通过周明坐在教室的第1列、第3行怎样用数对表示和给出数对确定位置的活动,加深数对与座位示意图行列的一一对应关系。这样的学习过程有利于学生直观体会直角坐标系的思想。
例2更为直接地呈现了方格纸这一学生熟悉的材料,其中同样蕴含着直角坐标系的思想,只不过没有明确表示出x、y轴。不同的是,例1中物体的位置相当于方格纸中的每个格子,而例2进一步抽象为一个点,用方格纸上的格点(横线和竖线的交点)来表示。可以说,方格纸是渗透直角坐标系的有效载体,借助方格纸来学习也是实践直观几何的重要手段。小学几何的学习立足于直观几何,通过方格纸研究几何图形的有关特点和性质,获得几何活动经验,发展几何直观,逐步培养学生推理的意识和能力。
四、具体编排
1.例1:用数对表示具体情境中物体的位置。
学生在生活中已经会用两个数描述位置,比如第几排第几个等,这里学习数学上位置的表示方法。教材呈现的是一个教室,老师的讲桌上有一个座位示意图,哪个学生如果有问题,按一下开关,座位示意图上的灯就会亮起来。这里编排的层次主要有:
(1)明确“列”“行”的含义及一般规则。结合“教师是如何确定张亮的位置”的讨论,使学生明确:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。
(2)给出数对表示的方法。由小精灵直接给出用数对表示的方法,正是有了前面的规则才能保证数对表示的唯一性。
(3)明确数的顺序,体会一一对应思想。通过比较王艳和赵雪两位同学的位置进一步明确数对中两个数是有顺序的。并体会数对和每个人的位置是一一对应的。
2.例2:在方格纸上用数对确定物体的位置。
1
教材进一步抽象,通过方格纸把用数对表示位置的实际问题抽象成用数对表示平面上点的位置的数学问题,使学生明确如何在方格纸上用数对确定点的位置,感悟数对与物体位置的一一对应关系。这种方格纸的呈现和数据的表示特点,初步渗透了直角坐标系的思想。
教学中,要注意渗透数形结合思想。如引导学生比较大象馆和海洋馆的位置数对,结合示意图观察在方格纸上这两个场馆是在同一条横线(行)上,相应的数对有什么特点。提问“如果两个数对中的第1个数相同,这两个场馆的位置有什么特点”,帮助学生初步感受数形结合的思想,加深对方格纸上用数对确定位置的理解。教学时,还可以根据需要增加一些场馆,或者对数据进行调整。
此外,本单元的练习安排注意体现两方面,一是联系实际。如第4题,中药房中根据药方抓药的场景,进一步让学生用数对表示位置。体会简洁性。二是综合应用。结合前面学习的方向来描述路线和位置,如第8题。也为后面的学习作好铺垫。
四、教学建议
1.充分利用学生已有的生活经验和知识基础,经历用数对表示位置的学习过程。
学生在生活中已经具有大量用数对确定物体位置的经验,教学中应充分利用这些经验和知识为学生提供探究的空间,帮助学生将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。同时,在“用数对确定位置”的教学过程中应注重学生的自主探究学习,让学生经历表示物体位置的过程,在比较中发现用数对表示位置的简洁与有效。
2.适时渗透数形结合的思想和方法,感悟数对与位置的一一对应思想。
如练习中的第7题,让学生发现图形平移后,位置变了,表示顶点位置的数对也相应的变了,发现其中的规律。教师在教学中应充分利用这些素材,通过形来研究数的特点,通过数来呈现物体的位置,在方格纸和用数对表示点的位置的方法之间架起了数与形的桥梁,使学生初步体会数形结合的思想,并感悟数对和点的位置的一一对应关系。
2