广西省来宾市2019-2020学年中考数学二模考试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.0.00005叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,用科学记数法表示为( ) A.0.5×10﹣4
B.5×10﹣4
C.5×10﹣5
D.50×10﹣3
2.AD=1,AB>1,AG平分∠BAD,C作BE⊥AG 于点E,CF⊥AG如图,在矩形ABCD中,分别过点B,于点F,则AE-GF的值为( )
A.1 B. C. D.
3.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( ) A.
1 2B.
1 83C.
8D.
111?? 2224.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
3630=10 ﹣
x1.5x3630C.=10 ﹣
1.5xxA.3036=10 ﹣
x1.5x3630D. +=10
1.5xxB.
5.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A.
5 2B.
15 48C.
3D.
10 36.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是( ) A.﹣10 8.计算(﹣A.﹣
B.10
C.﹣6
D.2
1 21﹣1
)的结果是( ) 21B.
2C.2 D.﹣2
9.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 次数 A.8、8
7 1 B.8、8.5
8 4 C.8、9
9 3 D.8、10
10 2 10.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是( ) A.
3040? xx?15B.
3040? x?15xC.
3040? xx?15D.
3040? x?15x11.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A.
3 5B.
3 4C.
2 3D.
5 712.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的
1后得到线段CD,则端点C和D的坐标分别为( ) 2
A.(2,2),(3,2) C.(2,2),(3,1)
B.(2,4),(3,1) D.(3,1),(2,2)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.
14.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为
,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,
则这两盏灯的水平距离EF是______米精确到1米
15.AF⊥BD,AF交BC于点F,如图,在长方形ABCD中,垂足为E,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.
?1?(x?1)?116.解不等式组?2,则该不等式组的最大整数解是_____.
??1?x?217.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.
18.对于一元二次方程x2?5x?2?0,根的判别式b2?4ac中的b表示的数是__________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元. (Ⅰ)求这两种品牌计算器的单价;
(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.
(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.
20.(6分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人
2016年图书借阅总量是10800数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
21.(6分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3). (1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点 B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
222.(8分)已知关于x的一元二次方程 (m?1)x?(m?4)x?3?0(m为实数且m?1).求证:此方程总
m有两个实数根;如果此方程的两个实数根都是整数,求正整数...的值.
23.(8分)先化简,再求值:
5?m?3?2m?2?÷??,其中m是方程x+2x-3=0的根. 2m?2?3m?6m?24.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ; (2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数. 25.(10分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量
y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
26.(12分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.
27.(12分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?