文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
初中数学定理、公式汇编
第一篇 数与代数
第一节
数与式
一、实数
1.
实数的分类:整数(包括:正整数、0、负整数)和分数(包括:
有限小数和无限环循小数)都是有理数.如:-3,
,0.231,0.737373…,
,
等;无限不环循小数叫做无理数.
如:π,,0.01…(两个1之间依次多1个0)等.有理数和无理数统
称为实数.
2.
数轴:规定了原点、正方向和单位长度的直线叫数轴。实数和数轴上的点一一对应。
3. 绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨-3.14.
_丨=
;丨3.14-π丨=π-
4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数。a的相反数是-a,0的相反数是0。
5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.
6.
科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.
7.
大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
1文档来源为:从网络收集整理.word版本可编辑.
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
8.
数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。
9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这
个数a就叫做x的平方根(也叫做二次方根式)。一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.
10.开平方:求一个数a的平方根的运算,叫做开平方. 11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,
那么这个正数x就叫做a的算术平方根,0的算术平方根是0. 12.立方根:一般地,如果一个数x的立方等于a,即x=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13.开立方:求一个数a的立方根的运算叫做开立方.
14.平方根易错点:(1)平方根与算术平方根不分,如 64的平
方根为士8,易丢掉-8,而求为64的算术平方根; (2)4的平方根是士2,误认为4平方根为士 2,知道4=2. 15.二次根式:
(1)定义:形如a(a≥0)的式子叫做二次根式. 16.二次根式的化简:
17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整
数;(2)被开方数中不含有能开得尽的因数或因式. 18.同类二次根式:几个二次根式化成最简二次根式以后,如果被
开方数相同,这几个二次根式就叫做同类二次根式. 19.二次根式的乘法、除法公式
3
2文档来源为:从网络收集整理.word版本可编辑.
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
20..二次根式运算注意事项:(1)二次根式相加减,先把各根式
化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.
21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值
相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.
22.有理数减法法则:减去一个数,等于加上这个数的相反数. 23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再
把绝对值相乘;任何数与0相乘,积仍为0.
24.有理数除法法则:两个有理数相除,同号得正,异号得负,并
把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.
25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;
如果有括号,先算括号里面的. 26.有理数的运算律:
加法交换律:a+b=b+a(a、b为任意有理数)
加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数) 二.代数式:
(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。单独一个数或一个字母也是代数式。
3文档来源为:从网络收集整理.word版本可编辑.