湖北省十堰市2024年中考数学试卷
一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.(3分)下列实数中,是无理数的是( ) A.0
B.﹣3
C.
D.
【分析】根据无理数是无限不循环小数,可得答案. 【解答】解:A、0是有理数,故A错误;
B、﹣3是有理数,故B错误; C、是有理数,故C错误; D、
是无理数,故D正确;
故选:D.
【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=( )
A.50°
B.45°
C.40°
D.30°
【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.
【解答】解:∵直线AB⊥AC, ∴∠2+∠3=90°. ∵∠1=50°,
∴∠3=90°﹣∠1=40°, ∵直线a∥b, ∴∠1=∠3=40°, 故选:C.
1 20页) 第页(共
【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键. 3.(3分)如图是一个L形状的物体,则它的俯视图是( )
A. B. C. D.
【分析】找到从上面看所得到的图形即可.
【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度. 故选:B.
【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 4.(3分)下列计算正确的是( ) A.2a+a=2a C.(a﹣1)=a﹣1
2
22
B.(﹣a)=﹣a D.(ab)=ab
2
22
22
【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.
【解答】解:A、2a+a=3a,故此选项错误;
B、(﹣a)=a,故此选项错误; C、(a﹣1)=a﹣2a+1,故此选项错误; D、(ab)=ab,正确.
故选:D.
【点评】此题主要考查了合并同类项以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.
5.(3分)矩形具有而平行四边形不一定具有的性质是( ) A.对边相等 C.对角线相等
2
222
2
22
B.对角相等
D.对角线互相平分
2 20页) 第页(共
【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等. 【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等. 故选:C.
【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等. 6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):
组员 得分
甲 81
乙 77
丙 ■
丁 80
戊 82
平均成绩 80
众数 ■
则被遮盖的两个数据依次是( ) A.80,80
B.81,80
C.80,2
D.81,2
【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.
【解答】解:根据题意得:
80×5﹣(81+77+80+82)=80(分), 则丙的得分是80分; 众数是80, 故选:A.
【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.
7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是( ) A.C.
﹣﹣
=15 =20
B.D.
﹣﹣
=15 =20
【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.
【解答】解:设原计划每天铺设钢轨x米,可得:故选:A.
3 20页) 第页(共
,
【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.
8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,
AD=5,CE=,则AE=( )
A.3
B.3
C.4
D.2
【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长. 【解答】解:连接AC,如图, ∵BA平分∠DBE, ∴∠1=∠2,
∵∠1=∠CDA,∠2=∠3, ∴∠3=∠CDA, ∴AC=AD=5, ∵AE⊥CB, ∴∠AEC=90°, ∴AE=故选:D.
=
=2
.
【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理. 9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第
n个数为,则n=( )
A.50
B.60 C.62
4 20页) 第页(共
D.71
【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决. 【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…, ∴分母为11开头到分母为1的数有11个,分别为
,
∴第n个数为,则n=1+2+3+4+…+10+5=60, 故选:B.
【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )
A.﹣20
B.﹣16
C.﹣12
D.﹣8
【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.
【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、
BF,如图所示:
则△BDE≌△FDE,
∴BD=FD,BE=FE,∠DFE=∠DBE=90° 易证△ADF∽△GFE ∴
,
5 20页) 第页(共