问卷调查与数据分析,对于创建用户模型方法
很想写一些东西来总结总结自己的工作,可惜工作太忙一直也没顾得上来写。最近闲来想和大家讨论讨论关于创建用户模型的事情。
一、用户模型的建立与问卷数据的采集
Persona:(Persona是用户模型的的简称)是虚构出的一个用户用来代表一个用户群。一个persona可以比任何一个真实的个体都更有代表性。
首先,用户模型是对用户的一种划分,是将一个类的概念转化成为一个角色。这里举一个简单的例子:电影里有很多角色,但是生活中有和电影中一模一样的角色么?显然是很少的,除非遇到极品。电影中人物的角色是集合了广大角色的共性而产生的角色代表,代表的是一类人或是一个群体。
用户是大量混杂的,我们需要将用户按照角色分开来确定不同角色的偏好与场景的结合,这才是建立persona体系的主要目的。
下面具体讲讲建立Persona体系的步骤。
谈起建立Persona体系高手颇多,我这个菜鸟可不敢班门弄斧,我个人比较推崇Dr.Lene Nielsen的10步建立Persona方法。
?
Finding the users 发现用户
? ?
Building a hypothesis建立假设
? ?
Verifications调研
? ?
Finding patterns发现共同模式
? ?
Constructing personas构造虚构角色
? ?
Defining situations定义场景目标
? ?
Validation and buy-in复核与买进
? ?
Dissemination of knowledge知识的散布
? ?
Creating scenarios创建剧情
? ?
On-going development持续的发展
?
按照Dr.Lene Nielsen的方法可以建立起一套完整的用户模型体系(虽然有几条我也不是太会用),不过对于大多数产品这个方法还是有点高深莫测。
我刚接触这个玩意的时候看了一下午还是不太明白这玩意怎么用。所以只能基于这个高深玩意,自己总结了一套能够切实可行的Persona模型构造方法准备在下面简单说说,我本属菜鸟,大家多多提意见哦!
第一步:确定用户,做出假设
首先,要明确用户群体,这个在大多数应用开发之前就应该明确了。连用户群都不知道还开发个毛产品。其次,做出用户角色假设。这个时候大家就要问了,我本来就是要确定用户角色模型,这不是本末倒置了么??我要说明一点,在用户角色分析之前,我们要有个对用户划分的方向。比如对于一个游戏,我们要划分用户模型,其实有很多种分的方法。用户可以分为,初级玩家、中级玩家;还可以分为,战略性玩具、视觉性玩家、装备性玩家。
任何一个用户群体都有多种分类方式,首先要确定我们到底怎么来分类用户。确定了分类方式之后,再来一个一个分类来研究。
下面以一个我从事的互联网医疗产品作为一个简单的例子,来对这一点进行说明。这里只是简单举例,真正的用户模型假设分类远比例子复杂的多。
首先简单定义用户群:身体出现非紧急病症的人群。
如果是急症或是严重的病症一般会直接前往医院,并不会打开手机应用来咨询医生或者询问用药指导。所以我们的适用人群是身体出现异样且非紧急的人群。
做出假设,为了举例方便,我们简单的把用户角色分为:细心护理型、粗放型。细心护理型:主要是指非常注意自己的健康状况,不放过一点一滴的问题。粗放型:只需要知道个大概有事没事,不太关心自己的健康状态。我们先简单将用户角色分为这两种,继续第二步发分析。
第二步:确定用户兴趣点(提取变量变量)
对于这一步,可以通过少量用户访谈来完成,其实就是找到所有用户关注的点,我们将这些用户关注的点称为变量。
比如对于医疗产品,经过对用户的访谈,我们简略总结用户关注度为:医生的真实可靠性、医生的负责程度、能否找本地医生挂号、产品视觉、产品交互。为了举例方便,我们简单总结用户关注的这5个特点。从而可知,我们得到5个变量,下面将设计问卷分析出对不同角色用户对这5个变量的差异性。
第三步:设计问卷(最关键的一步)
问卷是针对我们产品真实用户群的调查,所以题目的设计必须非常具有针对性,并且通过结果能够达到我们预期的效果。
首先,要先将问卷问题分成三个区:甄别性问题区、变量问题区、建议性问题区。估计有人要问这都是些神马???其实这些很简单。甄别性问题,是用来甄别出用户属于哪个角色;比如我设置了10个问题,符合1,3,5条问题的用户属于角色A,符合2,4,6条问题的用户属于角色B。
甄别性问题:
以刚才的例子,我们简单设置3个甄别性问题: Z1.您一般在线咨询病情的时间是多久?
A.<5min B.5-10min C.10-20min D.>20min Z2.您是否需要随时的咨询医生? A.需要 B.不需要 C.看情况
Z3.如果手上被划了一个小口子,并不是非常严重,您会? A.立刻消毒包扎 B.清洗干净后该干嘛干嘛 C.压根不管
我们定义甄别规则如下:
为了举例方便,我们简单给甄别角色设置了上述规则。这里说明几点,第一,规则是人设定的,可以更改,只有更好的规则,规则没有对错;第二,问题1、问题2、问题3之间是“与”的关系,问题内选项是“或”的关系。
有个问题,如果用户的答案都不满足于上面的规则,那如何分配用户角色呢???答案很简单:要么真正研究规则并修改规则;要么作为数据清洗将用户清洗掉(说明该用户没有认真答题,或是用户属于极小类群)。当然这个地方还有很多可以优化,具体参考数据挖掘资料。
变量性问题:
变量性问题其实是指针对用户关注的点进行问题设置。我们刚才举例总结出的关注点为:医生的真实可靠性、医生的负责程度、能否找本地医生挂号、产品视觉、产品交互,5个方面,针对每个方面可以设置1-n问题。(为了简便,每个变量仅列出一个问题)
下面在列举出一个变量举出多个问题的例子: 产品交互:
?
您对页面扭转时的流畅性要求如何?请用1-100分给出(1代表不在意,100代表非常在意)
? ?
您对手机应用的操作频率如何?请用1-100分给出(1代表不经常,100代表经常操作)
? ?
您喜爱扁平化的交互设计还是深度立体的交互设计?请用1-100分给出(1代表喜欢扁平化的交互设计,100代表喜欢深度立体的交互设计)
?
…
总之,在设计变量性问题的时候,最好得到可量化的数字,这样方便于对以后的多元回归统计工作。