1 为了使氦氖激光器的相干长度达到1KM,它的单色性???0应为多少?
解答:设相干时间为?,则相干长度为光速与相干时间的乘积,即
Lc???c
根据相干时间和谱线宽度的关系 ???1??cLc
又因为
???0????0,?0?c?0,?0?632.8nm
由以上各关系及数据可以得到如下形式: 单色性=
???0????0=
?0632.8nm?10= ?6.328?10Lc1?1012nm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm和?从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt时间内输出的能量为dE,则 功率=dE/dt
激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即 dE?3000MHZ输出1瓦连续功率,问每秒钟
?nh?,其中n为dt时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在
dt时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:
n?dE功率?dt? h?h?每秒钟发射的光子数目为:N=n/dt,带入上式,得到:
n功率1?Js??1每秒钟发射的光子数?N???sdth?6.626?10?34?J?s?????
3?108ms?1根据题中给出的数据可知:?1???3?1013Hz ?6?110?10mc3?108ms?115 ?2???1.5?10Hz ?9?2500?10m6 ?3?3000?10Hz
c把三个数据带入,得到如下结果:N1?5.031?1019,N2?2.5?1018,N3?5.031?1023
3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求
(a)当ν=3000兆赫兹,T=300K的时候,n2/n1=? (b)当λ=1μm,T=300K的时候,n2/n1=? (c)当λ=1μm,n2/n1=时,温度T=?
解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:
n2f?(E2?E1)?h??2exp?exp (统计权重f1?f2) n1f1kbTKbT其中kb?1.38062?10?23JK?1为波尔兹曼常数,T为热力学温度。
n2?h??6.626?10?34?J?s???(a)?exp?exp?0.99
n1kbT1.38062?10?23J?k?1?T??(b)
n2?h???1.38?10?21
?exp?exp?23?1n1kbT1.38062?10J?k?T?6.626?10?34?J?s??c??(c) T??h?kb?lnn2n16.626?10?34?J?s????kb?lnn2n1?3c??6.26?103K
4 在红宝石调Q激光器中,有可能将几乎全部Cr宝石棒直径为1cm,长度为7.5cm,Cr能量输出和脉冲功率。
?3离子激发到激光上能级并产生激光巨脉冲。设红
19离子浓度为2?10cm?3,巨脉冲宽度为10ns,求激光的最大
解答:红宝石调Q激光器在反转能级间可产生两个频率的受激跃迁,这两个跃迁几率分别是47%和53%,其中几率占53%的跃迁在竞争中可以形成的激光,因此,我们可以把激发到高能级上的粒子数看成是整个激发到高能级的Cr?3粒子数的一半(事实上红宝石激光器只有一半的激发粒子对激光有贡献)。
?3设红宝石棒长为L,直径为d,体积为V,Cr为?,则Cr?3总数为N,Cr?3粒子的浓度为n,巨脉冲的时间宽度
离子总数为:
N?n?V?n??d2L4
根据前面分析部分,只有N/2个粒子能发射激光,因此,整个发出的脉冲能量为:
N?nLd2E??h???h??
28脉冲功率是单位时间内输出的能量,即
?nLd2h?P???解答完毕。
?8?E5 试证明,由于自发辐射,原子在E2能级的平均寿命为?s?1A21。
证明如下:根据自发辐射的定义可以知道,高能级上单位时间粒子数减少的量,等于低能级在单位时间内粒子数的增加。即:
dn2?dn????21? ---------------① (其中等式左边表示单位时间内高能级上粒子数的变dt?dt?sp化,高能级粒子数随时间减少。右边的表示低能级上单位时间内接纳的从高能级上自发辐射下来的粒子数。)
再根据自发辐射跃迁几率公式:
A21?dn211?dtn2,把??dn21???A21n2代入①式, dt??sp得到:
dn2??A21n2 dt?n20exp??A21t? (其中n2随时间变化,n20为开始时候的高能级
对时间进行积分,得到:n2具有的粒子数。)
按照能级寿命的定义,当
n2?e?1时,定义能量减少到这个程度的时间为能级寿命,用字母?s表示。 n201A21证明完毕
因此,
A21?s?1,即: ?s?6 某一分子的能级E4到三个较低能级E1 E2 和E3的自发跃迁几率分别为A43=5*10s, A42=1*10s, A41=3*10s,试求该分子E4能级的自发辐射寿命τ4。若τ1=5*10s,τ2=6*10s,τ3=1*10s,在对E4连续激发且达到稳态时,试求相应能级上的粒子数比值n1/n4, n2/n4和n3/n4,并说明这时候在哪两个能级间实现了集居数
解: (1)由题意可知E4上的粒子向低能级自发跃迁几率A4为:
7
-1
-7
-9
-8
7-17-1
A4?A41?A42?A43?5?107?1?107?3?107?9?107s则该分子E4能级的自发辐射寿命:
-1
?4?11?8??1.1?10s 7A49?10结论:如果能级u发生跃迁的下能级不止1条,能级u向其中第i条自发跃迁的几率为Aui 则能级u的自发辐射寿命为:
?N?1?Auii
(2)对E4连续激发并达到稳态,则有:
?n1??n2??n3??n4?0
A41A42A43E2E4E3n11?1?n4A41,n21?2?n4A42,n31?3?n4A43
E1(上述三个等式的物理意义是:在只考虑高能级自发辐射和E1能级只与E4能级间有受激吸收过程,见图)
宏观上表现为各能级的粒子数没有变化 由题意可得:
n11?1?n4A41,则
n1?A41?1?3?10?7?5?10?7?15 n4同理:
nn2?A42?2?1?10?7?6?10?9?0.06,3?A43?3?5?10?7?1?10?8?0.5 n4n4n1?250n2,
进一步可求得:
n2?0.12 n3由以上可知:在 E2和E4;E3和E4;E2和E3能级间发生了粒子数反转.
7 证明,当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。 证明如下:按照普朗克黑体辐射公式,在热平衡条件下,能量平均分配到每一个可以存在的模上,即
E?h??n?h?h?exp?1kbT? (n为频率为γ的模式内的平均光子数)
由上式可以得到:nE?h?1
h?exp?1kb?T8?h?3又根据黑体辐射公式:????3c??11???n 3h?h?8?h?exp?1exp?1kbTkbTc3和受激辐射跃迁几率公式W218?h?3A21根据爱因斯坦辐射系数之间的关系式?3B21c以推导出以下公式:
?B21??,则可
n?????B21??W21???3AA21A218?h?21c3B21
如果模内的平均光子数(n)大于1,即 n?W21?1,则受激辐射跃迁几率大于自发辐射跃迁几率,即辐射光中受A21激辐射占优势。证明完毕
8 一质地均匀的材料对光的吸收系数为0.01mm强的百分之几?
如果一束光通过长度为1M地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
解答:设进入材料前的光强为I0,经过z距离后的光强为I?1,光通过10cm长的该材料后,出射光强为入射光
?z?,根据损耗系数???dI?z??dz1I?z?的定义,可以得到:
I?z??I0exp???z?
?1I?z??100%??exp??z??100%?e??0.01mm?100mm??100%?36.8%
I0则出射光强与入射光强的百分比为:
kz?根据小信号增益系数的概念:g0?dI?z?1?,在小信号增益的情况下, dzI?z?上式可通过积分得到
I?z??I0expg0z?expg0z?ln?I?z?I?z??g0z?ln?g0?I0I0 解答完毕。
I?z?I0ln2??6.93?10?4mm?1z1000《激光原理》习题解答第二章习题解答
1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.
证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共焦腔。公共焦点在腔内的共 焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。)
根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是R1和R2,腔长为L,根据对称共焦腔特点可知: