§9.7 抛物线
最新考纲 1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.了解抛物线的定义、几何图形和标准方程,知道其简单几何性质.
1.抛物线的概念
平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 2.抛物线的标准方程与几何性质
y2=2px 标准方程 (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0) p的几何意义:焦点F到准线l的距离 图形 顶点坐标 对称轴 焦点坐标 离心率 准线方程 范围 开口方向
px=- 2x≥0,y∈R 向右 px= 2x≤0,y∈R 向左 p?F??2,0? x轴 p-,0? F??2?e=1 py=- 2y≥0,x∈R 向上 py= 2y≤0,x∈R 向下 p0,? F??2? O(0,0) y轴 p0,-? F?2?? 1
概念方法微思考
1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形? 提示 过点F且与l垂直的直线.
2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?
提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( × ) a?
(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是??4,0?,准线方a
程是x=-.( × )
4
(3)抛物线既是中心对称图形,又是轴对称图形.( × )
p?p,0的弦,若A(x1,y1),B(x2,y2),则x1x2=,(4)AB为抛物线y=2px(p>0)的过焦点F??2?4
2
2
y1y2=-p2,弦长|AB|=x1+x2+p.( √ )
(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.( √ ) 题组二 教材改编
2.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )
A.9 B.8 C.7 D.6 答案 B
解析 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.
3.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为____________________. 答案 y2=-8x或x2=-y
解析 设抛物线方程为y2=mx(m≠0)或x2=my(m≠0). 将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.
4.若抛物线y2=4x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是( )
2
1314
A.2 B. C. D.3
55答案 A
解析 由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离.∴点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为点F(1,0)到直线3x+4y+7=0的距离,即题组三 易错自纠
5.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( ) A.4 C.8 答案 B
解析 如图所示,
B.6 D.12
|3+7|
=2.故选A.
32+42
抛物线的准线l的方程为x=-2,F是抛物线的焦点,过点P作PA⊥y轴,垂足是A,延长PA交直线l于点B,则|AB|=2.由于点P到y轴的距离为4,则点P到准线l的距离|PB|=4+2=6,所以点P到焦点的距离|PF|=|PB|=6.故选B.
6.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是( ) A.y2=±22x C.y2=±4x 答案 D
解析 由已知可知双曲线的焦点为(-2,0),(2,0). p设抛物线方程为y2=±2px(p>0),则=2,
2所以p=22,所以抛物线方程为y2=±42x.故选D.
7.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是__________. 答案 [-1,1]
解析 Q(-2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0, 由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0, 解得-1≤k≤1.
3
B.y2=±2x D.y2=±42x
题型一 抛物线的定义和标准方程
命题点1 定义及应用
例1 设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________. 答案 4
解析 如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,
则|P1Q|=|P1F|.
则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4, 即|PB|+|PF|的最小值为4. 引申探究
1.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值. 解 由题意可知点B(3,4)在抛物线的外部.
∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0), ∴|PB|+|PF|≥|BF|=42+22=25, 即|PB|+|PF|的最小值为25. 2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值. 解 由题意知,抛物线的焦点为F(1,0). 点P到y轴的距离d1=|PF|-1, 所以d1+d2=d2+|PF|-1.
易知d2+|PF|的最小值为点F到直线l的距离, 故d2+|PF|的最小值为
=32,
12+?-1?2|1+5|
所以d1+d2的最小值为32-1. 命题点2 求标准方程
例2 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的标准方程为( )
4
A.y2=4x或y2=8x C.y2=4x或y2=16x 答案 C
B.y2=2x或y2=8x D.y2=2x或y2=16x
p?pp,0,抛物线的准线方程为x=-,则由抛物线的定义知,xM=5-,解析 由题意知,F??2?225yM?5yM25
,,所以圆的方程为?x-?2+?y-?2=,又因为圆过设以MF为直径的圆的圆心为??22??2??2?4p
5-?,解得p=2或p=8,所以抛点(0,2),所以yM=4,又因为点M在C上,所以16=2p??2?物线C的标准方程为y2=4x或y2=16x, 故选C.
思维升华 (1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.
(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.
跟踪训练1 (1)设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________. 答案
5
解析 如图,易知抛物线的焦点为F(1,0),准线是x=-1,
由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离. 于是,问题转化为在抛物线上求一点P,
使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小, 显然,连接AF与抛物线相交的点即为满足题意的点, 此时最小值为[1-?-1?]2+?0-1?2=5.
(2)如图所示,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的标准方程为( )
5