RAMSEY NUMBER OF HYPERGRAPH PATHS
Erxiong Liu[1]
【期刊名称】《《应用数学年刊:英文版》》 【年(卷),期】2018(034)004
【摘要】Let H =(V, E) be a К-uniform hypergraph. For 1≤s≤К-1, an s-pathPn^(К,s). of length n in H is a sequence of distinct vertices v1,v2,…,vs+n(К-s)such that{υ1+i(К-s),…,vs+(i+1)(К-s)}is an edge of H for each 0≤i≤n-1.In this paper, we prove that R(Pn^(3s,s),P3^(3s,s))=(2n + l)s+1 for n≥3.
【总页数】12页(P.383-394)
【关键词】hypergraph Ramsey number; path 【作者】Erxiong Liu[1]
【作者单位】[1]College of Math and Computer Science Fuzhou University Fuzhou 350116 Fujian P R China 【正文语种】中文 【中图分类】O175 【相关文献】
1.ENVELOPING THEORY BASED METHOD FOR THE DETERMINATION OF PATH INTERVAL AND TOOL PATH OPTIMIZATION FOR SURFACE MACHINING [J],
2.Comparison of flux measurement by open-path and close-path eddy covariance systems [J], SONG; Xia; YU; Guirui; LIU; Yunfen; SUN;
Xiaomin; REN; Chua
3.Emptiness (Sunyata) for Caring the Self in the Middle Path: Reinvestigating the Middle Path Philosophy of Ngggrjuna [J], Mathew Varghese
4.浅谈as-path及基于as-path的路由过滤 [J], 程莉莉; 彭睿; 夏炜; 饶险峰; 尤学勇
5.Joining Paths and Dividing Paths: Juiz de Fora, Brazil [J], Luciane Tasca; Antonio Colchete Filho; Victor Nascimento
以上内容为文献基本信息,获取文献全文请下载