6。(1+2+3+4+5+6+4+5+6)÷3=12,所以有下面的填法:
练习三
1,将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。
2,将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。
3,将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。
46
例题4 将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。
分析 首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数。由于28÷3=9……1,那么2a除以3应该余2,因此,a可以为1、4或7。当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法。
练 习 四
1,将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。
2,将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等。
47
3,将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。
例题5 如下图(a)四个小三角形的顶点处有六个圆圈。如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等。问这六个质数的积是多少?
分析 设每个小三角形三个顶点处○内数的和为X。因为中间的小三角形顶点处的数在求和时都用了三次,所以,四个小三角形顶点处数的总和是4X=20+2X,解方程得
48
X=10。由此可知,每个小三角形顶点处的三个质数的和是10,这三个质数只能是2、3、5。因此这6个质数的积是2×2×3×3×5×5=900。如图(b)。
练习五
1,将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的积都相等。
2,将1——9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大。这五个数之和最大是多少?
3,将1——9九个数分别填入下图○内,使外三角形边上○内数之和等于里面三角形边上○内数之和。
49
第11周 周期问题
专题简析:
周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
例题1 流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?
分析 根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。
练习一
1,跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?
2,有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么
50