好文档 - 专业文书写作范文服务资料分享网站

2020年人教版高中数学必修3全册精品教案(全套完整版)

天下 分享 时间: 加入收藏 我要投稿 点赞

点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例. 变式训练

请以5次多项式函数为例说明秦九韶算法,并画出程序框图. 解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0 首先,让我们以5次多项式一步步地进行改写: f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0 =((a5x3+a4x2+ a3x+a2)x+a1)x+a0 =(((a5x2+a4x+ a3)x+a2)x+a1)x+a0 =((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.

上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可. 程序框图如下图:

例2 已知n次多项式Pn(x)=a0xn+a1xn-1+…+an-1x+an,如果在一种算法中,计算x0k(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.

第16页 共171页

答案:65 20

点评:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达

(n?1)n,加法最多n次.秦九韶算法通过转化把2乘法运算的次数减少到最多n次,加法最多n次.

例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值. 解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7 =((((2x-5)x-4)x+3)x-6)x+7. 计算的过程可以列表表示为:

最后的系数2 677即为所求的值. 算法过程: v0=2; v1=2×5-5=5; v2=5×5-4=21; v3=21×5+3=108; v4=108×5-6=534; v5=534×5+7=2 677.

点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算. 知能训练

当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值. 解法一:根据秦九韶算法,把多项式改写成如下形式: f(x)=((((3x+8)x-3)x+5)x+12)x-6.

第17页 共171页

按照从内到外的顺序,依次计算一次多项式当x=2时的值. v0=3;

v1=v0×2+8=3×2+8=14; v2=v1×2-3=14×2-3=25; v3=v2×2+5=25×2+5=55; v4=v3×2+12=55×2+12=122; v5=v4×2-6=122×2-6=238. ∴当x=2时,多项式的值为238.

解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6, 则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238. 拓展提升

用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值. 解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)x v0=7; v1=7×3+6=27; v2=27×3+5=86; v3=86×3+4=262; v4=262×3+3=789; v5=789×3+2=2 369; v6=2 369×3+1=7 108; v7=7 108×3+0=21 324. ∴f(3)=21 324. 课堂小结

第18页 共171页

1.秦九韶算法的方法和步骤. 2.秦九韶算法的计算机程序框图. 作业

已知函数f(x)=x3-2x2-5x+8,求f(9)的值.

解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8 ∴f(9)=((9-2)×9-5)×9+8=530.

设计感想

古老的算法散发浓郁的现代气息,这是一节充满智慧的课.本节主要介绍了秦九韶算法.

通过对秦九韶算法的学习,对算法本身有哪些进一步的认识?

教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法等等.

第3课时 案例3 进位制

导入新课 情境导入

在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制. 推进新课 新知探究

第19页 共171页

提出问题

(1)你都了解哪些进位制? (2)举出常见的进位制.

(3)思考非十进制数转换为十进制数的转化方法.

(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.

活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路. 讨论结果:

(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.

(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.

(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……

例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子: 3 721=3×103+7×102+2×101+1×100.

与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七

第20页 共171页

2020年人教版高中数学必修3全册精品教案(全套完整版)

点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1
推荐度:
点击下载文档文档为doc格式
09iak4ufds8njyy26yqz6tzp834d3b018ro
领取福利

微信扫码领取福利

微信扫码分享