好文档 - 专业文书写作范文服务资料分享网站

2020年人教版高中数学必修3全册精品教案(全套完整版)

天下 分享 时间: 加入收藏 我要投稿 点赞

乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33

请问从上面的数据中你能否看出甲、乙两名运动员哪一位发挥比较稳定? 如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板书课题).

思路2

如下样本是随机抽取近年来北京地区7月25日至8月24日的日最高气温. 7月25日至832.5 34.6 33.0 30.8 31.0 28.6 31.5 28.8 月10日 8月828.6 31.5 28.8 33.2 32.5 30.3 30.2 29.8 33.1 日至8月24日 怎样通过上表中的数据,分析比较两时间段内的高温(≥33 ℃)状况?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.

思路3

讨论:我们要了解我校学生每月零花钱的情况,应该怎样进行抽样? 提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢? 讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含的信息,用样本去估计总体)

指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字

第76页 共171页

41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.3 32.8 29.8 25.6 24.7 30.0 30.1 29.5 30.3

特征(平均数、标准差等)估计总体的数字特征.这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布. 推进新课 新知探究 提出问题

(1)我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较合理地确定出这个标准,需要做哪些工作?(让学生展开讨论) (2)什么是频率分布?

(3)画频率分布直方图有哪些步骤? (4)频率分布直方图的特征是什么? 讨论结果:

(1)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况. 分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式. 下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚地看到整个样本数据的频率分布情况.

第77页 共171页

(2)频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布. (3)其一般步骤为:

①计算一组数据中最大值与最小值的差,即求极差; ②决定组距与组数; ③将数据分组; ④列频率分布表; ⑤画频率分布直方图.

(4)频率分布直方图的特征:

①从频率分布直方图可以清楚地看出数据分布的总体趋势.

②从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.

同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象. 提出问题

(1)什么是频率分布折线图? (2)什么是总体密度曲线?

(3)对于任何一个总体,它的密度曲线是否一定存在?是否可以被非常准确地画出来?

(4)什么叫茎叶图?画茎叶图的步骤有哪些? (5)茎叶图有什么特征? 讨论结果:

第78页 共171页

(1)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.

(3)实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确

(4)当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图. 画茎叶图的步骤如下:

①将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎为十位上的数字,叶为个位上的数字;

②将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧; ③将各个数据的叶按大小次序写在其茎右(左)侧.

(5)①用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.

②茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.

茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录(这对于教练员发现运动员现场状态特别有用);而频率分布表和频率分布直方

第79页 共171页

图则损失了样本的一些信息,必须在完成抽样后才能制作.

正确利用三种分布的描述方法,都能得到一些有关分布的主要特点(如分布是否具有单峰性、是否具有对称性、样本点落在各分组中的频率等),这些主要特点受样本的随机性的影响比较小,更接近于总体分布的相应的特点.

频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,茎叶图和频率分布表极为类似,事实上,茎相当于频率分布表中的分组;茎上叶的数目相当于频率分布表中指定区间组的频数. 应用示例

思路1

例1 有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人. (1)列出学生参加运动队的频率分布表. (2)画出频率分布条形图.

解:(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:

试验结果 参加足球队(记为1) 参加篮球队(记为2) 参加排球队(记为3) 参加乒乓球队(记为4) 合 计 100 1.00 频数 30 27 23 20 频率 0.30 0.27 0.23 0.20 (2)由上表可知频率分布条形图如下:

第80页 共171页

2020年人教版高中数学必修3全册精品教案(全套完整版)

乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲、乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板书课题).思路2如下样本是随机抽取近年来北京
推荐度:
点击下载文档文档为doc格式
09iak4ufds8njyy26yqz6tzp834d3b018ro
领取福利

微信扫码领取福利

微信扫码分享