铁路通信的发展趋势
铁路通信网发展至今,发生了天翻地覆的变化,从模拟到数字,从电缆到光缆,从PDH到SDH,从STM到ATM,从ATM到IP/DWDM……。一代又一代新技术、新系统层出不穷。然而,绝大多数新技术、新系统都是应用于骨干网中,用户接入网仍为模拟双绞线技术所主宰。由于社会经济和通信技术的发展,单纯的语音业务已难以满足用户和发展的需求,特别是光纤技术的出现,以及用户对新业务,尤其是对数据业务的需求增加,给整个网络的结构带来了影响,同时也为用户接入网的改造和更新带来了转机。所谓接入网是指骨干网络到用户终端之间的所有设备。其长度一般为几百米到几公里,因而被形象地称为\最后一公里\。由于骨干网一般采用光纤结构,传输速度快,因此,接入网便成为了整个网络系统的瓶颈
2 铁路无线通信接入网的发展过程
20世纪50年代,中国铁路车站值班员和编组场内线路值班员开始使用列车无线调度电话和站内无线电话,采用工作频率为2MHz和 40MHz的电子管设备。70年代初,全部改用150MHz和450MHz频段的晶体管设备。80年代初,在编组场上推广应用携带小型的150MHz、450MHz的站内无线电话。铁路沿线维护作业人员的无线电话也相继推广使用。养路、施工的报警无线装置也得到迅速的发展和应用,并进行了山区隧道区段的列车无线调度电话试验。形成了铁路无线通信的覆盖范围为铁路沿线的狭长地带和站场、车站所在地的区域。由于铁路沿线地形复杂、无线电传播环境恶劣,加之列车的快速移动,决定了铁路无线通信网与公用移动通信网和区域性的专业移动通信网的差别,它是一种属于线面结合、以线为主的链状网。
3 铁路无线通信接入网的应用现状 由于铁路列车具有高速运动的特点,因而无线接入网在铁路通信网中占有相当大的比重。随着铁路现代化改造进程的迅速推进,从前单一的无线列调系统已经远远不能满足铁路无线通信的需要,这样就迫切需要建设一套适合于铁路现代化运营指挥需要的先进的无线通信系统。系统必须可以实现调度中心与车站值班员之间、车站值班员与列车司机之间、列车司机与调度中心之间的通话功能,必须可以实现线路管理区间的公务移动通信功能,同时还必须能够实现调度中心与列车司机室之间实时的双向数据通信功能。这样,专门为铁路通信设计的综合专用数字移动通信系统GSM-R(GSMforRailways)就应运而生了。GSM-Railway属于专用移动通信的一种,专用于铁路的日常运营管理,是非常有效的调度指挥通信工具。GSM-R是基于分组数据的通信方式。它在GSMPhase2+的规范协议的高级语音呼叫功能,如组呼、广播呼叫、多优先级抢占和强拆业务的基础上,加入了基于位置寻址和功能寻址等功能,适用于铁路通信特别是铁路专用调度通信的需要。主要提供无线列调、编组调车通信、区段养护维修作业通信、应急通信、隧道通信等语音通信功能,可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。
4 铁路无线通信接入网的发展趋势 随着铁路安全、重载、信息化及运营管理等方面对无线通信业务需求日益增多,铁路客票、机务、工务、车辆、电务等多个部门均需提供车地之间无线数据传输通道。铁路车地之间的无线数据传输需求包括:工务轨道动态监测信息无线传输;工务线路环境监测信息无线传输;客车运行安全监控信息(TCDS)无线传
输;电务信号设备动态监测信息无线传输;机务安全监测信息无线传输;客票查询信息无线传输。其中,客票查询信息无线传输主要是列车进站时,列车长可以手持无线终端设备向地面客票信息发布中心发送请求,以便掌握本列车当前客票销售状态,对客车上座位和铺位等进行统一管理。因此,铁路部门急需搭建全路统一的无线通信接入平台,设立统一出口,为各项应用系统等车地之间信息传递提供无线传输通道。接入平台应能与公网(GPRS和短信中心)、铁路各应用系统进行互联互通,实现信息接收、存储、处理和转发,具备安全保障、日志记录和分类统计等功能
铁路通信网未来的发展趋势应该是向着与公用网相融合的方向,并达到与公用网的统一。从而使得用户无论是在运行中的列车上,还是在铁路网的覆盖区域均能够通过铁路通信网进行如同办公室一样方便的信息交流,如进行电话联络、数据通信和图像传输、接入Internet等。而要满足这一要求,集群移动通信系统已经远远不够,GSM(R)和现行的CDMA技术也不能达到这一要求。从现在的发展情况看,惟有第三代的CDMA技术才可能担当起这一重任。因此,铁路通信网的无线接入部分今后的发展方向也必须是朝着第三代CDMA的方向。当然,并不是说第三代的CDMA技术就可以直接用来完成未来的铁路无线接入系统的功能,如同GSMR一样,必须将铁路通信所必备的功能(如群呼、组呼、优先级别、强插、强拆等功能)融入这一技术之中,形成具有铁路通信特有要求的公用无线通信接入网。
以铁道部的全程全网的优势全力发展如随时随地的提供铁路客货运输资讯信息、订购火车票等服务,在列车就能享受语音、传真、数据、视频、移动通信及Internet等服务。另外,考虑到铁路已经延伸到很多较为偏僻的地区,这些地区的公用通信网尚未建立起来。利用已经建立好的铁路通信网,并将其经过适当的扩容改造,比如建立单基站无线接入系统,增加移动交换功能,适应信息社会的发展,有效发挥铁路通信网在国民经济中的社会效益和经济效益。 随着人们生活水平的提高和环境噪声污染的加剧,改善城市和乡村的声环境质量已经成为人们迫切的需求。噪声监测作为噪声污染防治的基础也自然成为环境保护部门的工作重点。传统的数据监测方法耗时、费力并且可靠性差,因此,环境噪声网络化自动监测系统的建设对于实现环境噪声的长时间连续自动监测具有重要的现实意义。
由于国外欧美一些发达国家的工业化和城市化进程比较早,环境问题的产生和相应的环境噪声监测研究与应用已有二十多年的历史,西班牙、法国及瑞典等发达国家已生产出全天候长年能在户外进行测量噪声的自动监测系统,并能根据监测系统提供的数据进行噪声预测软件的设计和城市规划,实现科学合理地控制城市环境噪声[1 ~4]。
由于环境噪声自动连续监测系统在国外城市区域的广泛应用,大大地促进了城市区域环境噪声的战略研究。有关噪声软件根据环境噪声自动连续监测系统网络的监测数据可绘制城市区域的瞬时三维立体彩色噪声谱图以显示噪声超标地段、时间[5,6]。目前,国内的大部分环境噪声网络化监测系统的结构是前端利用噪声采集终端或数据采集仪完成噪声信号的采集,然后利用显示屏直接显示噪声分贝等级,或者是利用 GPRS 无线网络将数据上传到噪声监控中心,噪声监控中心实现噪声数据的处理、存储及噪声等级显示等功能[7],这些方案具有费用较高、操作复杂及资源不能重复利用等缺点。因此,笔者提出基于虚拟仪器技术的环境噪声自动监测系统。