玻璃等,主要用于电子工业,制造玻壳,芯柱,排气管,或作为玻璃封接材料。 对于建筑玻璃,按其用途可细分为以下五类; (1) 平板玻璃
主要利用其透光性和透视性,用作建筑物的门窗,橱窗及屏风等。这一类玻璃包括普通平板玻璃,磨砂玻璃,磨光玻璃,浮法平板玻璃和花纹平板玻璃。 (2) 饰面玻璃
主要利用其表面色彩图案花纹及光学效果等特性,用于建筑物的立面装饰和地坪装饰。这一类玻璃有;辐射玻璃,釉面玻璃,镜面玻璃,拼花玻璃,水晶玻璃,彩色玻璃和矿渣微晶玻璃等。 (3) 安全玻璃
主要利用其高强度,抗冲击及破碎后无伤人危险等特性,用于装饰建筑物安全门窗,阳台走廓,采光天棚,玻璃幕墙等。主要种类为;钢化玻璃,夹丝玻璃,夹层玻璃等。
(4) 功能玻璃
具有吸热或反射热,吸收或反射紫外线,光控或电控变色等特性,多用于高级建筑物的门窗,橱窗等,也用于玻璃幕墙。主要品种有;吸热玻璃,热反射玻璃,低辐射玻璃,选择吸收玻璃,防紫外线玻璃,光致变色玻璃,中空玻璃,电致变色玻璃,等。 (5) 玻璃砖
主要用于屋面和墙面装饰,该类产品包括;特厚玻璃,玻璃空心砖,玻璃锦砖,泡沫砖等。 按性能分类
这种方法一般用于一些专门用途的玻璃,其名称反映了玻璃所具有的特性。例如;
按光学特性:光敏玻璃,声光玻璃,光色玻璃,高折射率玻璃,低色散玻璃,
反射玻璃,半透过玻璃。
按热学特性:热敏玻璃,隔热玻璃,耐高温玻璃,低膨胀玻璃。
按电学特性:高绝缘玻璃,导电玻璃,半导体玻璃,高介电性玻璃,超导玻璃。
力学性能:高强度玻璃,耐磨玻璃。 化学稳定性:耐酸玻璃,耐碱玻璃。 3.玻璃的形成方法
为了把物质转变为玻璃态,无论起始状态是气体,液体还是固体,最关键的一点是原子在低温时难以运动,从而使它没有足够的时间完成规则排列。从不同聚集状态的物质向玻璃转变的角度来分类,玻璃的形成方法有; 熔体冷却法
用熔体冷却法制作玻璃态物质其远程无序结构是用加热熔化的方法获得的。至于能否保持其远程无序结构,取决于熔体达到过冷状态的倾向大小,即取决于熔点以下熔体过冷而不致引起成核和结晶的能力。显然,只有那些过冷程度很大而不析晶的液体才可能成为玻璃。
传统熔体冷却方法是将玻璃原料加热,熔融,澄清,均化,透明均质的熔体,然后在常规条件下冷却面成固态玻璃物质,由于不需要复杂的制冷设备。世界上极大部分玻璃产品都是通过这种方法生产的。
某些金属,合金及一些离子化合物,虽在高温下能形成熔体,但用常规方法冷却时,很容易析晶而不能制成玻璃。但随着熔体冷却技术的进步,已有可能使它们在 快速冷却过程中因来不及析晶而成为玻璃体。例如,利用离心力将熔融金属液喷射到冷却的金属板面上,其冷却速度为传统熔体冷却速度的20-30倍;如将金属 液滴放入快速运动的活塞与铜垫之间,被压制成几十微米厚的薄片因铜的快速传热而成为玻璃体,其冷却速度为传统熔体冷却速度的2到3个数量级倍;如将金属液 滴甩到两个转鼓之间,冷却速度可达105-107℃/秒,可轧
制成厚度为20-1微米的非晶态金属带,这种方法称之为非晶态合金薄膜离心急冷法。玻璃态金 属具有很高的强度,硬度,电阻,磁性和比热。其性能指标比现有的优质牌号钢要高得多。这些材料在仪器仪表制造,无线电工程及其他领域得到了应用。 气相沉积法
无机玻璃和金属玻璃主要是通过熔冷却来制取的,但无机玻璃也可以通过气相来制造。例如,可以应用内部气相沉积法制造光通讯用的石英玻璃纤维,将 SiCl4和GeCl4的混合气体通入石英玻璃管内,使它们在气相状态下氧化并分解,形成非晶态后凝聚在玻璃管的内壁。又例如,制造反 射望远镜镜头时所使用的TiO2-SiO2系低膨胀玻璃,也是通过气相反应的方法制造的,用火焰将TiCl4-SiCl4的混合气体加热到1800℃左 右,使之氧化并分解,形成的TiO2-SiO2微细粒子粘附到接收台架上,经收集并加热烧结成玻璃。 通过气相制作玻璃态的方法有:
真空蒸发法 少量样品在真空条件下通过加热或电子束轰击,蒸发成气相,然后使之在冷却的衬底上冷凝成无定形玻璃态膜。这种方法的优点是无污染,可用以制取As2S3膜,Si3N4膜等。
阴极溅射法 金属或氧化物靶受阴极电子或惰性气体原子或离子束的轰击后,溅射到衬底上,经冷却而成无定形材料。近年来,在此基础上又发展了一种反应溅射法,即使溅射到基板上的材料与氧化进行反应形成氧化物无定形薄膜(如PbO-TeO2膜,PbO-SiO2膜等)。
溅射法粒子的能量(10eV)比真空蒸发法的能量(0。1eV)高,故膜层附着力强,致密度高,适用于不易蒸发的材料,其缺点效率不够高。
化 学气相沉积法 (CVD)气态物质在固体表面发生反应后,仍然以远程无序的状态凝结在固体材料的表面,当然,反应必须发生在固体表面或表面附近。应用这种方法的条件是; 反应剂在室温下或不太高的温度下呈气态或蒸汽压较高,且
纯度较高,能形成所需要的沉积层而其他反应产物易于挥发。在工艺上,要求重现性好,成本低。
用CVD法制备的涂层粘附性好,内应力小,均匀性好。已用于制备多种玻璃态材料,如;半导体工业用的Si3N4绝缘材料,Si3N4-C, Si3N4-AlN复合导电材料,用于硼扩散源的BN以及具有导电性,化学稳定性,且质地坚硬的玻璃态硼化物(如Ti-B,Al-B,Zr-B等)。 晶体能量泵入法
辐照法 是利用高速中子束或α粒子束轰击晶体材料表面而使其无定形化的一种方法。其过程为SiO2(晶体)→中子轰击→SiO2(玻璃).
由于中子或α粒子把很大的能量传递给晶体中的原子,使原子离开它在晶格中的平衡位置进入空隙,或因发生碰撞而形成缺陷,导致晶格中原子间距和化学键角均发生变化,造成向结构远程无序的转化而形成玻璃态。
冲击波法 用爆炸法或夹板对晶体物质施以冲击波,在极大的压力和随之而来的高温作用下,转变成玻璃态。例如,石英晶体在压强大于3。6×1010Pa的冲击波作用成了玻璃态;又如晶态白磷在250℃下,压力大于7×108Pa时形成玻璃态磷.
离 子注入法 用高能量的离子束(几十电子伏到几十万电子伏)轰击晶体表面,当注入离子达到一定剂量时(一般不小于10%),可使基体表面非晶体化。这是由于离子注入时 产生的热峰作用和轰击时产生的极高压力密度和位错密度,使基体表面呈远程无序状态。用这种方法可制备多种玻璃态合金系统,如Fe ,Co ,Ni 系统,B,P系统等。 固相热分解法
用固相热分解也可制得非晶态材料,但在实际应用中有重要意义的材料只有玻璃碳,它是由酚醛树脂和糠醇经加热碳化而成的。加热至400-800℃时,气孔表面积增大,质量,体积减小,在800-1200℃时,气孔相继消失,变成有玻璃
状外观的无气孔玻璃碳。 溶胶-凝胶法(S-G)
溶胶-凝胶法也称溶液低温合成法,用于制备玻璃只有几十年的历史。其原理是将有适当组成的液态金属有机化合物(金属醇盐)通过化学反应和缩聚作用生成凝胶,经加热脱水后烧结形成玻璃材料。目前已能用溶胶-凝胶法成功地制备块状,薄膜状,纤维状以及中空球状玻璃材料。 与熔体冷却法相比,溶胶-凝胶法的优点是:
(1) 作为原料的醇盐易于提纯,产品纯度高。 (2) 原料可在分子级水平上加以混合,均匀性高。 (3) 热处理温度低,节省能源,减少了挥发损失和污染。 (4) 能制取高粘度,易分相,易析晶的玻璃材料。 溶胶-凝胶法的缺点是原料成本高,干燥和烧结时易开裂。
综上所述,虽然玻璃形成的方法很多,新的方法不断产生,但熔体冷却中的传统熔体冷却工艺仍然是大量生产玻璃的主要工艺。 附:平板玻璃发展简史
大型平板玻璃的生产始于明清之际,生产技术是由西欧传入的,最早在广州,以后在四川,北京生产。1922年,比利时在秦皇岛建设耀华玻璃厂,于1924年建成投产,日产约400-500标箱。同年,日本在大连建设玻璃厂,于第二年投产。之后,日本又扩建沈阳玻璃厂。
1945年,苏联红军进入大连后,大连玻璃厂于1947年恢复了生产。秦皇岛耀华玻璃厂和沈阳玻璃厂于1949年3月相继恢复了生产。1949年,我国 平板玻璃产量不足100万重(?)箱,远远满足不了需要。经过10年的努力,1960年我国平板玻璃的产量达500多万重箱。改革开放以后,平板玻璃产量 更快地得到了增长,见下表;