好文档 - 专业文书写作范文服务资料分享网站

初中数学总复习教案课程(完美版)

天下 分享 时间: 加入收藏 我要投稿 点赞

值。但若联系二次函数的最值求解,可设: 结合图象用顶点坐标公式解,思维能力就更上档次了。所以在应用问题中要发散思维,自觉联系学过的所有数学知识,灵活解决问题。答案:(1)每件衬衫应降价20元;(2)每件衬衫应降价15元时,商场平均每天盈利最高。 4.某音乐厅5月初决定在暑假期间举办学生专场音乐会,?入场券分为团体票和零售票, 其中团体票占总票数的.若提前购票,则给予不同程度的优惠,在5月份内,团体 三、训练: 见《中考大决战》. 四、教学反思:

第12课时 分式方程及应用

教学目标

1.使学生进一步掌握解分式方程的基本思想、方法、步骤,并能熟练运用各种技巧解方程,会检验分式方程的根。

2.能解决一些与分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.

教学重点 解分式方程的基本思想和方法。 教学难点 解决分式方程有关的实际问题。 教学过程 一:【知识梳理】

1.分式方程:分母中含有 的方程叫做分式方程.

2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;

3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为

解分式方程可能出现增根,所以解分式方程必须验根。验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.

5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。 二:【经典考题剖析】

1. 解下列分式方程: 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别 设,,解后勿忘检验。

2. 解方程组: 分析:此题不宜去分母,可设=A,=B得:,用根与系数的关系可解出A、B,再求,解出后仍需要检验。

3. 若关于x的分式方程有增根,求m的值。

4. 某市今年1月10起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年

12月份多6 m3,求该市今年居民用水的价格.

解:设市去年居民用水的价格为x元/m3,则今年用水价格为(1+25%) x元/m3.根据题意,得

经检验,x=1.8是原方程的解.所以 .

答:该市今年居民用水的价格为 2.25 x元/m3.

点拨:分式方程应注意验根.本题是一道和收水费有关的实际问题.解决本 题的关键是根据题意找到相等关系:今年5月份的用水量一去年12月份的用量=6m3.

5. 某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。当地一公司收获这种蔬菜140吨,其加工厂生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这蔬菜全部销售或加工完毕,为此公司初定了三种可行方案: 方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售; 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。你认为哪种方案获利最多?为什么?略解:第一种方案获利630 000元;第二种方案获利725 000元;第三种方案先设将吨蔬菜精加工,用时间列方程解得,故可算出其获利810000元,所以应选择第三种方案。 三、训练: 见《中考大决战》. 四、教学反思:

第13课时 坐标系与函数

知识点:

平面直角坐标系、常量与变量、函数与自变量、函数表示方法 教学目标:

1.了解平面直角坐标系的有关概念,会画直角坐标系,能由点的坐标系确定点的位置,由点的位置确定点的坐标;

2.理解常量和变量的意义,了解函数的一般概念,会用解析法表示简单函数; 3.理解自变量的取值范围和函数值的意义,会用描点法画出函数的图像。 教学重点

能根据坐标描出点的位置,由点的位置写出它的坐标;了解函数的一般概念,会用解析法表示简单函数; 教学难点

能在直角坐标系描述物体的位置、确定物体的位置. 一、基础回顾:

1.平面直角坐标系的初步知识 在平面内画两条互相垂直的数轴,就组成平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面.

x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号: 由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一

起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的. 2.函数

设在一个变化过程中有两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说x是自变量, y是x的函数. 用数学式子表示函数的方法叫做解析法.在用解析式表示函数时,要考虑自变量的取值范围必须使解析式有意义.遇到实际问题,还必须使实际问题有意义.

当自变量在取值范围内取一个值时,函数的对应值叫做自变量取这个值时的函数值. 3.函数的图象

把自变量的一个值和自变量取这个值时的函数值分别作为点的横坐标和纵坐标,可以在坐标平面内描出一个点,所有这些点组成的图形,就是这个函数的图象.也就是说函数图象上的点的坐标都满足函数的解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上.

知道函数的解析式,一般用描点法按下列步骤画出函数的图象:

(i)列表.在自变量的取值范围内取一些值,算出对应的函数值,列成表. (ii)描点.把表中自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点.

(iii)连线.按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来. 二:【经典考题剖析】

1. 如果点M(a+b,ab)在第二象限,那么点N(a,b)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

解析:由M在第二象限,可知a+b<0,ab>0可确定a<0,b<0,从而确定N在第三象限。 2.在直角坐标系中,点P(3,5)关于原点O的对称点P?的坐标是 ; 解析:关于轴对称点的横坐标相等,纵坐标互为相反数;关于轴对称的点横坐标互为相反数,纵坐标相等;关于原点对称的点横坐标、纵坐标都互为相反数。 3.函数y?x?1中,自变量x的取值范围是 ( )

A. x < 1 B. x ≤ 1 C. x > 1 D. x ≥1 解析:求函数自变量的取值范围,往往通过解方程或解不等式(组)来确定,要学会这种转化方法.

4.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:

⑴第一天中,在什么时间范围内这头骆 驼的体温是上升的它的体温从最低上升 到最高需要多少时间

⑵第三天12时这头骆驼的体温是多少 ⑶兴趣小组又在研究中发现,图中10时

到22时的曲线是抛物线,求该抛物线的解析式.

略解: ⑴第一天中,从4时到16时这头骆驼的体温是上升的;它的体温从最低上升到最高需要12小时.⑵第三天12时这头骆驼的体温是39℃. ⑶y??12x?2x?24?10?x?22?. 16解析:函数的三钟表示方法:解析式、列表法和图像法.本题要从所给图像中提取信息, 三、训练: 见《中考大决战》. 四、教学反思:

第14课时 一次函数

教学目标

1、经历一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;

2、经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力. 3、经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;

4、经历函数图象信息的识别与应用过程,发展形象思维能力.初步理解一次函数的概念; 5、理解一次函数及其图象的有关性质;初步体会方程和函数的关系.能根据所给信息确定一次函数表达式;

6、会作一次函数的图象,并利用它们解决简单的实际问题. 教学重点 一次函数的概念、图像及其性质

教学难点 运用一次函数的图象及其性质解决有关实际问题 教学过程 一:【知识梳理】

1. 一次函数的意义及其图象和性质

(1)一次函数:若两个变量x、y间的关系式可以表示成 (k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b 时,称y是x的正比例函数.

(2)一次函数的图象:一次函数y=kx+b的图象是经

过点( , ),( , )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如右表所示.

(3)一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而 ;当k<0时,y的值随x值的增大而 .

(4)直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系. ①直线经过第 象限(直线不经过第 象限); ②直线经过第 象限(直线不经过第 象限); ③直线经过第 象限(直线不经过第 象限); ④直线经过第 象限(直线不经过第 象限); 2. 一次函数表达式的求法

(1)待定系数法:先设出解析式,再根据条件列方程或方程组求出未知系数,从而写出这个解析式的方法,叫做待定系数法,其中的未知系数也称为待定系数。

(2)用待定系数法求出函数解析式的一般步骤:① ;② 得到关于待定系数的方程或方程组③ 从而写出函数的表达式。

(3)一次函数表达式的求法:确定一次函数表达式常用待定系法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。 二:【经典考题剖析】

1.在函数y=-2x+3中当自变量x满足______时,图象在第一象限.

解:0<x< 点拨:由y=2x+3可知图象过一、二、四象限,与x轴交于(,0),

所以,当0<x<时,图象在第一象限.

2.已知一次函数y=(3a+2)x-(4-b),求字母a、b为何值时: (1)y随x的增大而增大;(2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3;(5)图象与y轴交点在x轴下方.

3.杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:(1)买进每份0.2元,卖出每份0.3元;(2)一个月内(以30天计)有20天每天可以卖出200份,其余10天每天只能卖出120份;(3)一个月内,每天从报社买进的报纸数必须相同,当天卖不掉的报纸,以每份0.1元退给报社. ①填下表:

②设每天从报社买进该种晚报x份(120≤x≤200 )时,月利润为y元,试求出y与x之间的函数表达式,并求月利润的最大值.

4.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用后,那么服药后2小时血液中含药量最高,达每毫升6微克,(1微克=10-3毫克),接着逐步衰减,10小时时血液中含量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示。当成人按规定剂量服用后:

(1)分别求出≤2和≥2时与之间的函数关系式; (2)如果每毫升血液中含药量为4微克或4微克以上时, 在治疗疾病时是有效的,那么这个有效的时间是多长? 解析:(1)设≤2时,,把坐标(2,6)代入得:; 设≥2时,,把坐标(2,6),(10,3)代入得:。 (2)把代入与中得:,,则(小时),因此这个有效时间为6小时。 5. 如图,直线 相交于点A, 与x轴的交点坐标为(-1,0), 与y轴的交点坐标为(0,-2),结合图象解答下列问题: ⑴求出直线 表示的一次函数的表达式;

⑵当x为何值时, 表示的两个一次函数的函数值都大于0? 三、训练:

四、见《中考大决战》. 五、教学反思:

第15课时 反比例函数

教学目标;

1.能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的主要性质.逐步提高观察和归纳分析能力,体验数形结合的数学思想方法. 2.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 教学重点: 反比例函数的图象和性质以及用反比例函数的知识解决实际问题.

教学难点: 数形结合的数学思想方法的体验以及如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题. 教学过程 一:【知识梳理】

1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成 (k为常数,k≠0)的形式(或y=kx-1,k≠0),那么称y是x的反比例函数. 2.反比例函数的概念需注意以下几点:(1)k为常数,k≠0;(2)中分母x的指数为1;例如y= 就不是反比例函数;(3)自变量x的取值范围是x≠0的一切实数;(4)因变量y的

初中数学总复习教案课程(完美版)

值。但若联系二次函数的最值求解,可设:结合图象用顶点坐标公式解,思维能力就更上档次了。所以在应用问题中要发散思维,自觉联系学过的所有数学知识,灵活解决问题。答案:(1)每件衬衫应降价20元;(2)每件衬衫应降价15元时,商场平均每天盈利最高。4.某音乐厅5月初决定在暑假期间举办学生专场音乐会,?入场券分为团体票和零售票,其中团体票占总票数的.若提前购票,则给予不同程度的优惠,在5
推荐度:
点击下载文档文档为doc格式
0828q4ms663xy6q955p40ne2d1fovz01484
领取福利

微信扫码领取福利

微信扫码分享