22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:
路程(千米) 甲仓库 乙仓库 25 20 A果园 B果园 15 20 设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元, (1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)
运量(吨) 甲仓库 乙仓库 110﹣x 运费(元) 甲仓库 2×15x 乙仓库 2×25(110﹣x) A果园 x B果园 80﹣x x﹣10 2×20×(80﹣x) 2×20×(x﹣10) (2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?
【分析】(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80﹣x)吨,乙仓库运往A果园(110﹣x)吨,乙仓库运往B果园(x﹣10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;
(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据
一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费. 【解答】解:(1)填表如下:
运量(吨) 甲仓库 乙仓库 110﹣x 运费(元) 甲仓库 2×15x 乙仓库 2×25(110﹣x) A果园 x B果园 80﹣x x﹣10 2×20×(80﹣x) 2×20×(x﹣10) 故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);
(2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10), 即y关于x的函数表达式为y=﹣20x+8300, ∵﹣20<0,且10≤x≤80,
∴当x=80时,总运费y最省,此时y最小=﹣20×80+8300=6700.
故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.
【点评】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.
23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且
=
=m,连结AE,过点D作DM⊥AE,垂足为
点M,延长DM交AB于点F.
(1)如图1,过点E作EH⊥AB于点H,连结DH. ①求证:四边形DHEC是平行四边形; ②若m=
,求证:AE=DF;
的值.
(2)如图2,若m=,求
【分析】(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论; ②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论; (2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△FAD∽△EGA,即可得出结论.
【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°, ∴EH∥CA, ∴△BHE∽△BAC, ∴∵∴∴
, , , ,
∴HE=DC, ∵EH∥DC,
∴四边形DHEC是平行四边形;
②∵∴AC=AB, ∵
,∠BAC=90°,
,HE=DC,
∴HE=DC, ∴
,
∵∠BHE=90°, ∴BH=HE, ∵HE=DC, ∴BH=CD, ∴AH=AD,
∵DM⊥AE,EH⊥AB, ∴∠EHA=∠AMF=90°,
∴∠HAE+∠HEA=∠HAE+∠AFM=90°, ∴∠HEA=∠AFD, ∵∠EHA=∠FAD=90°, ∴△HEA≌△AFD, ∴AE=DF;
(2)如图2,过点E作EG⊥AB于G, ∵CA⊥AB, ∴EG∥CA, ∴△EGB∽△CAB,
∴∴∵
,
, ,
∴EG=CD,
设EG=CD=3x,AC=3y, ∴BE=5x,BC=5y, ∴BG=4x,AB=4y, ∵∠EGA=∠AMF=90°,
∴∠GEA+∠EAG=∠EAG+∠AFM, ∴∠AFM=∠AEG, ∵∠FAD=∠EGA=90°, ∴△FAD∽△EGA, ∴
=
【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.
24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶