一种优化初始中心的K-means聚类算法
邓海;覃华;孙欣
【期刊名称】《计算机技术与发展》 【年(卷),期】2013(000)011
【摘要】The traditional K-means clustering algorithm has the sensitivity and randomness for initial clustering center. So it easily falls in-to local optimal
solution
and
has
unstable
results.
To
solve
the
problem,proposed a K-means algorithm of meliorated initial clustering center based on vertical center point of the closest high density points. This algorithm selects K pairs of high density points that have the maximal distance between each other,and then uses the average values of K pairs of high density points as the initial clustering centers to implement the traditional K-means. The experimental results show that this algorithm is effective to eliminate isolated points and has bet-ter accuracy and stability.%针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这K对高密度点的均值作为聚类的初始中心,再进行K-means聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。 【总页数】4页(42-45)