好文档 - 专业文书写作范文服务资料分享网站

2020-2021中考数学复习《一元二次方程组》专项综合练习及答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

2020-2021中考数学复习《一元二次方程组》专项综合练习及答案解析

一、一元二次方程

1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.

(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?

(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?

(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?

【答案】(1)PQ=62cm;(2)s或12cm2. 【解析】

8524s;(3)经过4秒或6秒△PBQ的面积为 5试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;

(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;

(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时. 试题解析:(1)过点P作PE⊥CD于E.

则根据题意,得

EQ=16-2×3-2×2=6(cm),PE=AD=6cm; 在Rt△PEQ中,根据勾股定理,得 PE2+EQ2=PQ2,即36+36=PQ2,

∴PQ=62cm;

∴经过2s时P、Q两点之间的距离是62cm; (2)设x秒后,点P和点Q的距离是10cm. (16-2x-3x)2+62=102,即(16-5x)2=64, ∴16-5x=±8, ∴x1=

824,x2=;

558524sP、Q两点之间的距离是10cm; 5∴经过s或

(3)连接BQ.设经过ys后△PBQ的面积为12cm2. ①当0≤y≤∴

16时,则PB=16-3y, 311PB?BC=12,即×(16-3y)×6=12, 22解得y=4;

②当

1622<x≤时,

33BP=3y-AB=3y-16,QC=2y,则

11BP?CQ=(3y-16)×2y=12, 22解得y1=6,y2=-③

2(舍去); 322<x≤8时, 3QP=CQ-PQ=22-y,则

11QP?CB=(22-y)×6=12, 22解得y=18(舍去).

综上所述,经过4秒或6秒△PBQ的面积为 12cm2. 考点:一元二次方程的应用.

2.已知:关于x的方程x2-4mx+4m2-1=0. (1)不解方程,判断方程的根的情况;

(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2 【答案】(1) 有两个不相等的实数根(2)周长为13或17 【解析】

试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m为何值,该方程总有两个不相等的实数根;

(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5

代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.

试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.

(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.

将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.

当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;

当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17. 综上所述:此三角形的周长为13或17.

点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.

3.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程;

(2)若这个方程有两个实数根x1,x2,求a的取值范围;

(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 【答案】(1)x1??3,x2?4(2)a≤(3)-4 【解析】

分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a的范围; (3)根据根与系数的关系即可求出答案.

详解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;

(2)∵方程有两个实数根x1,x2,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得

54:a?5; 4 (3)∵x1,x2是方程的两个实数根,

2x12?x1?a?1?0,x22?x2?a?1?0,?x1?x12?a?1,x2?x2?a?1.

22???2?x?x2?x?x ∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴?1122?????9,把

2x1?x12?a?1,x2?x2?a?1 代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得:

a=﹣4,a=2(舍去),所以a的值为﹣4.

点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.

2020-2021中考数学复习《一元二次方程组》专项综合练习及答案解析

2020-2021中考数学复习《一元二次方程组》专项综合练习及答案解析一、一元二次方程1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是
推荐度:
点击下载文档文档为doc格式
07b857tyie4uc568cqjj1x2cx44ea901aa9
领取福利

微信扫码领取福利

微信扫码分享