好文档 - 专业文书写作范文服务资料分享网站

电动车辆用永磁同步电机设计说明

天下 分享 时间: 加入收藏 我要投稿 点赞

容量低转速的动力机常用同步电动机(见同步电机)。同步电动机不但功率因数高,而且其转速与负载大小无关,只决定于电网频率。工作较稳定。在要求宽范围调速的场合多用直流电动机[4]。但它有换向器,结构复杂,价格昂贵,维护困难,不适于恶劣环境。20世纪70年代以后,随着电力电子技术的发展,交流电动机的调速技术渐趋成熟,设备价格日益降低,已开始得到应用。

电动机在规定工作制式(连续式、短时运行制、断续周期运行制)下所能承担而不至引起电机过热的最大输出机械功率称为它的额定功率,使用时需注意铭牌上的规定。

电动机运行时需注意使其负载的特性与电机的特性相匹配,避免出现飞车或停转。电动机的调速方法很多,能适应不同生产机械速度变化的要求。一般电动机调速时其输出功率会随转速而变化。从能量消耗的角度看,调速大致可分两种:①保持输入功率不变。通过改变调速装置的能量消耗,调节输出功率以调节电动机的转速。②控制电动机输入功率以调节电动机的转速。

图1-5电动机转速控制原理框图

图1-5燃料电池工作原理示意图

电动车不在发动机内燃烧汽油。它使用存储在电池中的电来发动。在驱动汽车时有时使用12或24块电池,有时则需要更多。正如远距离控制的模拟电动汽车一样,电动车配有用来旋转车轮的电发动机以及使发动机运转的电池。

电动汽车主电动机的特征是:机壳由机座内衬和机座外套组成,新型体积小、重量轻,对电机的冷却及时可靠。

电动汽车主电动机,包括端盖、定子铁心、转子、定子绕组,其特征在于:机壳由机座内衬和机座外套组成,机座内衬的内侧固定定子铁心。铁心的冷却方式采用水冷或者风冷,本设计采用风冷方式,由固定在转子轴上的风扇实现,所实现的冷却较为可靠。

第2章 永磁同步电动机概述

永磁同步电机的运行原理与电励磁同步电机相同,但它以永磁体提供的磁通替代后者的励磁绕组励磁,使电机结构较为简单,降低了加工和装配费用,且无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究比较多并在各个领域中得到原来越广泛应用的一种电机。

2.1永磁同步电机分类

永磁同步电机分类方法主要有:

? 按工作主磁场方向分为:径向磁场式、轴向磁场式; ? 按电枢绕组位置可分为:内转子式(常规式)、外转子式;

? 按转子上有无启动绕组可分为:无起动绕组电动机(用于变频器供电场合,

利用频率的逐步升高启动,并随频率的改变而调节转速,常称为调速永磁同步电动机)、有起动绕组电动机(既可用于调速运行又可在某一频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);

? 按供电电流可分为:矩形波永磁同步电动机、正弦波永磁同步电动机(简

称永磁同步电动机)。

本课题所涉及电动机为径向磁场、内转子式的异步起动永磁同步电动机,采用正弦波供电电流。

2.2永磁同步电动机的总体结构

永磁同步电动机由定子、转子和端盖等部件构成。定子与普通感应电动机基本相同,采用叠片结构以减小电动机运行时的铁耗。转子铁心可做成实心或叠片叠压而成。电枢绕组既有采用集中整距绕组的,也有采用分布短距绕组和非常规绕组的。一般来说,矩形波永磁同步电动机通常采用整距绕组,正弦波永磁同步电动机通常采用分布短距绕组。

2.3永磁同步电动机的工作原理

永磁同步电动机属于异步启动永磁同步电动机,其磁场系统由一个或多个永磁体组成,通常是在用铸铝或铜条焊接而成的笼型转子的内部,按所需的极数装镶有永磁体的磁极。定子结构与异步电动机类似。 当定子绕组接通电源后,电动机以异步电动机原理起动动转,加速运转至同步转速时,由转子永磁磁场和定子磁场产生的同步电磁转矩(由转子永磁磁场产生的电磁转矩与定子磁场产生的磁阻转矩合成)将转子牵入同步,电动机进入同步运行。

永磁同步电机的定子为三相对称绕组,与三相异步电动机结构相同。转子上粘有钕铁硼(NdFeB)磁钢[5]。驱动器为交-直-交电压型逆变器,通过正弦波脉宽调制(SPWM)输出频率、电压可变的三相正弦波电压。

三相正弦波电压在定子三相绕组中产生对称三相正弦波电流,并在气隙中产生旋转磁场。旋转磁场的角速度?1?2?f/p,其中p为电动机对数。这个旋转磁场与已充磁的磁极作用,带动转子与旋转磁场同步旋转并使定、转子磁场轴线对齐。当外加负载转矩以后,转子磁场轴线将落后定子磁场轴线一个θ功率角,负载愈大,θ也愈大,直到一个极限角度θm,电动机失步为止。由此可

见:同步电动机在运行中,要么转速与频率严格成比例旋转,否则就失步停转。所以,它的转速与旋转磁场同步。它的静态误差为零;在负载扰动下,只是功率角θ变化,而不引起转速变化,它的响应时间是实时的。这是其它调速系统做不到的。但是,因为它存在失步问题,所以它不适合用于重载下运行。又由于它只能在频率渐升情况下才能启动,所以也不适于快速启动。

2.4永磁同步电动机的特点

永磁同步电动机应用广泛,具有以下特点: (1) 更高的综合节能效果

永磁同步电动机由永磁体激磁,无需励磁电流,故可显著提高功率因数(可达1甚至容性);定子电流小,定子铜耗显著减小;转子无铜耗(三相异步电动机转子绕组损耗约占总损耗的20~30%),因而发热低,可以取消风扇或减小风扇,从而无风摩耗或减少风摩耗,故永磁同步电动机一般比同规格异步电动机效率可提高2~8%,并且在很宽的负载变动范围内始终保持高的效率和功率因数,尤其在轻载运行时节能效果更显著。

(2) 可满足某些工业应用需大的起动转矩和最大转矩倍数的动态需求 常规异步电动机起动转矩倍数和最大转矩倍数都有限,为达要求,需选择更大容量的异步电动机,而到了正常运行状态,异步电动机则又处于轻载运行状态,效率和功率因数均较低。例如为油田抽油机设计的具有异步起动能力的永磁同步电动机,起动转矩倍数可达3.6倍以上,效率可达94%,功率因数可达0.95,既满足了负载动态时大转矩的要求,还具有很高的节能效果[6]。

(3) 能满足低速直接驱动的需求

电动车辆用永磁同步电机设计说明

容量低转速的动力机常用同步电动机(见同步电机)。同步电动机不但功率因数高,而且其转速与负载大小无关,只决定于电网频率。工作较稳定。在要求宽范围调速的场合多用直流电动机[4]。但它有换向器,结构复杂,价格昂贵,维护困难,不适于恶劣环境。20世纪70年代以后,随着电力电子技术的发展,交流电动机的调速技术渐趋成熟,设备价格日益降低,已开始得到应用。电动机在规定工作制式(连续式、短时
推荐度:
点击下载文档文档为doc格式
071px21tax371qz5d0ci05ej21u0rq00k4o
领取福利

微信扫码领取福利

微信扫码分享