第六章 生物工程中的下游加工(技术)
6.1前言
“下游加工(技术)” 对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,一个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism)都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经济的。而且,生物产品常常是非常脆弱(labile)敏感的化合物,其活性结构只能在限定并有限的pH、温度、离子强度等条件下才能保持。想着这些限制(bearing in mind),如果要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方式把单个单元操作结合起来。 6.2 粒子的分离
垂悬分词
在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表6.1;注意,细胞的比重不比fermentation broth 大很多。细胞的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth的性质,它的pH、温度等等,在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表6.2给出了分离方法的大体分类。 6.2.1 过滤
这个是分离filamentous fungi和fermentation broth中的filamentous bacteria(例如,链霉菌)所使用的最广泛和最典型的方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采用表面过滤或者深层过滤;或者离心过滤;所有情况下的驱动力都是压力,由超压产生或者由真空产生。
过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及(deposited filter cake)沉积的滤饼的作用。过滤基质与滤饼filter cake的抗性( resistance) 因此是关键的,决定了它的可压性(compressibility)。对于不可压的
filter cake滤饼,过滤速率与压力无关,但是多数生物材料是可压的,所以滤饼的抗性随着时间而增大而与过滤和滤饼形成过程中增大的总体抗性无关。
错流过滤实现了过滤流的巨大的改进,在错流过滤中,固体不经过过滤器而通过跨膜的湍流保持悬浮状态。这可以通过安排悬浮物流经膜来实现或者通过在过滤器中固定移动的blades or impellor来实现。简单的平板过滤广泛用于液体的澄清,也可以用于过滤少量的悬浮物,但是它们的载量是有限的;有时使用filer-press assemblies 尤其对于分批操作。
旋转鼓式真空过滤器大概是从fermentation broth分离微生物最为广泛使用的装置;在这些过滤器中,过滤部分是一个旋转的鼓维持在减少的内压下。这个鼓转到液体中进行过滤,它的连续转动使滤饼层进行重要的后续操作,如图6.1所示。为了避免在过滤器表面形成生物体增加过滤的抗性,这种过滤器常常fitted with a knife discharge,像图中所描绘的;if a mycelium which forms a coherent carpet is being seperated, it can be lifted from the filter by strings.常预先用助滤剂覆盖(precoate) 鼓,有助于防止阻塞并且保持一个恒定的压力降。最主要的优点是以最小的升温、低的动力消耗及将过滤与洗涤和部分去水(dewatering)相结合而有效过滤;但是助滤剂被过滤掉的