好文档 - 专业文书写作范文服务资料分享网站

数学建模方法大全 

天下 分享 时间: 加入收藏 我要投稿 点赞

则该时间序列可能是ARMA(p,q)模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解p,q和?、?的值,检验?t和yt的值。 模型阶数

实际应用中p,q一般不超过2.

自回归综合移动平均ARIMA(p,d,q)模型 模型含义

模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d(差分次数)一般不超过2. 模型识别

平稳时间序列的偏相关系数?k和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。

若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。即差分处理后新序列符合ARMA(p,q)模型,元序列符合ARIMA(p,d,q)模型。

一个平稳的随机过程有以下要求:均数不随时间变化,方差不随时间变化,自相关系数只与时间间隔有关,而与所处的时间无关。

偏自相关函数(PACF)解决如下问题: 高阶的自相关是否真的非常重要?

是他的确有意义,还是因为低阶自相关系数较大才引起高阶自相关系数也大? 如果建立一个以前值预测现在值的回归模型,需要包括多少个以前值?

指数平滑法用序列过去值的加权均数来预测将来的值,并且给序列中近期的数据以较大的权重,远期的数据给以较小的权重。理由是随着时间流逝,过去值的影响逐渐减小。

指数平滑法应用时存在以下问题:

指数平滑法只适合于影响时间的消逝呈指数下降的数据、

指数平滑法的每次预测都是根据上一个数来的,一般来说,用序列的第一个数作为初始值。如果数据点较多,那么经过指数衰减后,初始值的影响就不明显了。但是如果数据点少,则初始值的影响会很大,甚至大于近期的数据点,这就违背指数平滑影响呈指数衰减的假设了。所以,如果数据点少时应该考虑初始值的问题,一般来说,数据点大于40初始值的影响就不太明显。

需要指出的是,时间序列模型的预测一般不能太超前,对过于遥远的时间预测结果大多是不准确的。

十六、蒙特卡罗(MC)仿真模型 模型介绍:

蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题实际非常符合,可以得到很圆满的结果。这也是我们采用该方的原因。

蒙特卡罗的基本原理及思想:

当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。

蒙特卡罗解题的三个主要步骤:

(1)、构造或描述概率过程:

对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)、实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)、建立各种估计量:

一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡罗的特点及优缺点:

蒙特卡罗方法与一般计算方法有很大区别,一般计算方法对于解决多维或因素复杂的问题非常困难,而蒙特卡罗方法对于解决这方面的问题却比较简单。其特点如下:

· 直接追踪粒子,物理思路清晰,易于理解。

· 采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。

· 不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。

· MC程序结构清晰简单。

· 研究人员采用MC方法编写程序来解决粒子输运问题,比较容易得到自己想得到的任意中间结果,应用灵活性强。

十七、BP神经网络方法

摘 要 人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字 神经网络,BP模型,预测 1 引言

在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型

BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

数学建模方法大全 

则该时间序列可能是ARMA(p,q)模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解p,q和?、?的值,检验?t和yt的值。模型阶数实际应用中p,q一般不超过2.自回归综合移动平均ARIMA(p,d,q)模型模型含义模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直
推荐度:
点击下载文档文档为doc格式
06qqo6niwa3cwgj88zsb
领取福利

微信扫码领取福利

微信扫码分享