好文档 - 专业文书写作范文服务资料分享网站

混凝土结构设计原理复习重点(非常好) 期末复习资料汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

混凝土设计原理

1. 混凝土结构:以混凝土为主要材料制作的结构。包括:

素混凝土结构、钢筋混凝土结构、预应力混凝土结构。 钢筋混凝土结构优点:就地取材,节约钢材,耐久、耐火,可模性好,整体性好,刚度大,变形小。 缺点:自重大,抗裂性差,性质较脆。

2. 钢筋塑性性能:伸长率,冷弯性能。 伸长率越

大,塑性越好。

3. 规定以边长为150mm的立方体在(20+-3)度的温度

和相对湿度在90%以上的潮湿空气中养护28d,依照标准试验方法测得的具有95%保证率的抗压强度(以N/mm2计)作为混凝土的强度等级。

4. 收缩:混凝土在空气中结硬时体积减小的现象。

膨胀:混凝土在水中或处于饱和和湿度情况下结硬时体积增大的现象。

水泥用量越多、水灰比越大,收缩越大。骨料的级配好、弹性模量大,收缩小。构件的体积与表面积比值大,收缩小。

5. 钢筋混凝土结构的混凝土强度等级不应低于C20。采

用400MPa以上钢筋,不应低于C25。预应力混凝土结构,不宜低于C40,不应低于C30。承受重复荷载的,不应低于C30。 6. 粘结力的影响因素:化学胶结力(钢筋与混凝土接触面

上的化学吸附作用力),摩擦力(混凝土收缩后将钢筋紧紧地握裹住而产生的力),机械咬合力(钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力),钢筋端部的锚固力(一般是用在钢筋端部弯钩、弯折,在锚固区焊短钢筋、短角钢等方法来提供锚固力)。

7. 结构的作用是指施加在结构上的集中力或分布力,以

及引起结构外加变形或约束变形的各种因素。 按时间的变异分:永久作用,可变作用,偶然作用。 8. 结构抗力R是指整个结构或结构构件承受作用效应

(即内力和变形)的能力,如构件的承承载能力、刚度等。

9. 设计使用年限:是指设计规定的结构或结构构件不需

进行大修即可按齐预定目的使用的时期,即结构在规定的条件下所达到呃使用年限。

10. 轴心受拉(压)构件:纵向拉(压)力作用线与构件

截面形心线重合的构件。

轴心受力构件中配有纵向钢筋和箍筋,纵向钢筋的作用是承受轴向拉力或压力,箍筋的主要作用是固定纵向钢筋,使其在构件制作的过程中不发生变形和错位。

11. 受弯构件的破坏特征:少筋破坏(当构件的配筋率低

于某一定值时,构件不但承载能力很低,而且只要其一开裂,裂缝便急速开展,裂缝截面处的拉力全部由钢筋承受,钢筋由于突然增大的应力而屈服 ,构件立即发生破坏),适筋破坏(当构件的配筋率不是太低也不是太高时,构件的破坏首先是由于受拉区纵向受力钢筋屈服,然后受压区混凝土呗压碎,钢筋和混凝土的强度都得到充分利用),超筋破坏(当构件的配筋率超过某一特定的值时,构件的破坏特征又发生质的变化构件的破坏是由于受压区的混凝土呗压碎而引起,受拉区纵向受力钢筋不屈服)。

12. 基本假定:截面应变保持平面。不考虑混凝土的抗拉

强度。混凝土的受压的应力应变关系曲线按下列规定

取用。

13. 双筋矩形截面适用情况:1.结构或构件承受某种交变

的作用,使截面上的弯矩改变方向。2.截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩设计值,而截面尺寸的材料品种等由于某些原因又不能改变。3.结构或构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋。

14. T形截面受弯构件按受压区的高度不同分:第一类T

形截面,中和轴在翼缘内。第二类T形截面,中和轴在梁肋内。

15. 剪切破坏的形态:斜拉破坏(整个破坏过程急速而突

然,破坏荷载与出现斜裂缝时的荷载相当接近,破坏前梁的变形很少,并且往往只有一条斜裂缝。破坏具有明显的脆性),剪压破坏(这种破坏有一定的预兆,破坏荷载较出现斜裂缝时的荷载过高。但与适筋梁的正截面破坏相比,减压破坏仍属于脆性破坏),斜压破坏(破坏荷载很高,但变形很小,亦属于脆性破坏)。 16. 平衡扭转:若结构的扭矩是由荷载产生的,其扭矩课

根据平衡条件求得,与构件的抗扭刚度无关。 协调扭矩:另一类是超静定结构中由于变形的协调使截面产生的扭转。

17. 偏心受压构件分为:单向偏心受压构件,双向偏心受

压构件。

当ξ<=ξb,受拉钢筋先屈服,然后混凝土压碎,肯定为受拉破坏—大偏心受压破坏,反之为小偏心受压破坏。

18. 结构的可靠性:安全性(结构构件能承受在正常施工

和正常使用时可能出现的各种作用,以及在偶然事件发生时及大盛后,仍能保持必需的整体稳定性),适用性(在正常使用时,结构构件具有良好的工作性能,不出现过大的变形和过宽的裂缝),耐久性(在正常的维护下,结构构件具有足够的耐久性能,不发生锈蚀和风化现象)。

19. 裂缝的控制等级分为三级::正常使用阶段严格要求

不出现裂缝的构件。正常使用阶段一般要求不出现裂缝的构件。正常使用阶段允许出现裂缝的构件。

混凝土结构设计基本原理复习重点

第 1 章 绪 论

1.钢筋与混凝土为什么能共同工作:

(1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成

一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。

(2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度

变化时,不致产生较大的温度应力而破坏两者之间的粘结。

(3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,

保证了钢筋与混凝土的共同作用。

1、混凝土的主要优点:1)材料利用合理2 )可模性好 3)耐久性和耐火性较好 4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材

2、混凝土的主要缺点:1)自重大 2)抗裂性差3 )承载力有限 4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面

作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值

第2章 钢筋与混凝土材料物理力学性能

一、混凝土

1

混凝土设计原理

立方体抗压强度(fcu,k):用150mm×150mm×150mm的

立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(fcu,k为确定混凝土强度等级的依据)

1.强度 轴心抗压强度(fc):由150mm×150mm×300mm的棱柱

体标准试件经标准养护后用标准试验方法测得的。(fck=0.67 fcu,k) 轴心抗拉强度(ft):相当于fcu,k的1/8~1/17, fcu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样;一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低)

受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形 抗弹性变形的能力)

体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型

混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量

3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因 :

1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质

2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。

影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件

对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利)

(2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。

影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大;

2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小;

4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。

对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。

措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。

混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋

光圆钢筋:HPB235 表面形状

带肋钢筋:HRB335、HRB400、RRB400

有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈 服强度力学性能是主要的强度指标。(软钢)

A 没有明显屈服点的钢筋:在承载力计算时,取“件屈服强度??bh”s条

(00.85?b)(硬钢)

钢筋的疲劳是指钢筋在承受重复并带有周期性动荷载作用下,经过一定次数后,钢筋由原塑性破坏变成脆性突然断裂破坏的现象。 影响钢筋疲劳的因素

1疲劳应力幅 2钢筋外表面几何尺寸和形状3钢筋直径、钢筋强度等级4钢筋轧制工艺和试验方法

钢材在常温下经剪切、冷弯、辊压、冷拉、冷拔等冷加工过程,性能将发生显著改变,强度提高、塑性降低,使钢材产生硬化,有增加钢结构脆性的危险。

钢筋的冷拉特性:只提高抗拉强度,不提高抗压强度,强度提高,塑性下降

钢筋的冷拔能提高抗拉强度又能提高抗压强度

混凝土结构对钢筋性能的要求:强度、塑性、可焊性、与混凝土的粘结。

钢筋的力学指标:强度、 钢筋的塑性指标:伸长率、冷弯 钢筋的强度指标:屈服强度和极限强度 三、钢筋与混凝土的粘结 1.粘结的定义及组成

(1)定义:钢筋与其周围混凝土之间的相互作用。(包括沿钢筋长度的粘结和钢筋端部的粘结)

(2)组成:胶着力、摩擦力、机械咬合力。变形钢筋的粘结力最主要的是机械咬合力。

2.保证可靠粘结的构造措施

lfya??fd

t锚固长度的影响因素:钢筋直径、钢筋抗拉强度设计值、混凝土抗拉强度设计值、外形系数。

钢筋的锚固长度以拉伸锚固长度为基本锚固长度。任何情况下,纵向受拉钢筋的锚固长度不应小于250mm。 变形钢筋及焊接骨架中的光圆钢筋、轴心受压构件中的光圆钢筋可不做弯钩。

第3章 受弯构件正截面受弯承载力

一、梁、板的一般构造 1.截面形式与尺寸

板:厚度与跨度、荷载有关,以10mm为模数 梁:宽度一般为100,120,150,(180),200,(220),250,300,以下级差为50mm;高度一般为250,300,…,800mm,级差为50mm,800以上级差为100mm。h/b=2.0~2.5(矩形),h/b=2.5~3.0(T形)

2.材料的选择与构造

(1)钢筋:梁(纵向受力钢筋:常用HRB335,直径12,14,16,18,20,22;箍筋:常用HPB235或HRB335,直径6,8,10);板(纵向受拉钢筋:常用HPB235、HRB335,直径6,8,10,12;分布钢筋:常用HPB235,直径6,8)

(2)纵向受力钢筋配筋率:纵向受力钢筋截面面积As与截面有效面积bh0 的百分比 截面有效高度:截面高度减去纵向受拉钢筋全部截面重心至受拉边缘的距离h。=h-as

(3)混凝土保护层厚度:

纵向受力钢筋的外表面到截面边缘的的垂直距离,称为混凝土保护层厚度用c表示。

混凝土保护层的三个作用:1)防止纵向钢筋锈蚀2)在火灾等情况下,使钢筋的温度上升缓慢3)使纵向钢筋与混凝土有较好的粘结。

环境为一类,混凝土强度等级为C25~C45,混凝土保护层最小厚度,梁为25mm,板为15mm。

二.适筋梁正截面受弯的三个受力阶段 1.两个转折点:受拉区混凝土开裂点,纵向受拉钢筋开始屈服的点。 (1)混凝土开裂前的未裂阶段(Ⅰ):→Ⅰa是受弯构件正截面抗裂验算的依据。

特点:①受拉区混凝土没有开裂;②受压区混凝土的压应力图形是直线,受拉区混凝土的拉应力图形在第Ⅰ阶段前期是直线,后期是曲线;③弯矩与截面曲率基本上是直线关系。

(2)混凝土开裂后至钢筋屈服前的裂缝阶段(Ⅱ):→Ⅱ是裂缝宽

2

混凝土设计原理

度与变形验算的依据。

特点:①在裂缝截面处,受拉区大部分混凝土退出工作,拉力由纵向受拉钢筋承担,但钢筋没有屈服;②受压区混凝土已有塑性变形,但不充分,压应力图形为只有上升段的曲线,最大压应力在受压区边缘;③弯矩与截面曲率是曲线关系,截面曲率与挠度的增长加快了。

(3)钢筋开始屈服至截面破坏的破坏阶段(Ⅲ):→Ⅲa是正截面受弯承载力计算的依据。

特点:①受拉区绝大部分混凝土退出工作,钢筋屈服;②受压区混凝土的压应力图形为有上升段与下降段的曲线,最大压应力不在受压区边缘,而在边缘的内侧,最终受压区混凝土被压碎使截面破坏;③弯矩与截面曲率为接近水平的曲线关系。 2.正截面受弯破坏形态

适筋梁,少筋梁,超筋梁:实际配筋率小于最小配筋率的梁称为少筋梁;大于最小配筋率且小于最大配筋率的梁称为适筋梁;大于最大配筋率的梁称为超筋梁。

(1)少筋截面破坏形态:一裂就坏。(脆性破坏)?h0h??min (2)适筋截面破坏形态:钢筋先屈服,混凝土后压碎。(延性破坏)

?h0h??min,且???b 在适筋范围内,梁的承载力随配筋率的增大而增大。 (3)超筋截面破坏形态:混凝土先压碎,钢筋不屈服。(脆性破坏)???b超筋梁的承载能力最大。3.界限破坏:当钢筋的应力达到屈服强度的同时,处于受压区的边

缘的纤维的应力也恰好达到了混凝土的极限压应变值(用于比较适筋梁和超筋梁的破坏)

适筋梁,超筋梁,少筋梁的界限:配筋率和受压区高度 三、正截面承载力计算

(1)计算假定:①截面应变保持平面;②不考虑混凝土的抗拉强度;③已知混凝土受压的应力与应变关系;④已知纵向钢筋的应力-应变关系方程:纵向钢筋的应力取等于钢筋应变与其弹性模量的乘积,但其绝对值不应大于其强度设计值,极限应变为0.01。 (2)等效矩形应力图形的等效条件:1)两图形的面积相等,即压应力的合力C的大小不变;2)图形的形心位置相同,即压应力合力C的作用点不变。

(3)相对界限受压区高度(?b):与混凝土及钢筋强度

?xbb?h:界限受压区计算高度与截面有效高度的比值。

0

相对受压区高度??xh:受压区计算高度与截面有效高度的比

0值。

(4)最小配筋率的确定原则:由素混凝土截面计算得的受弯承载力(即开裂弯矩Mcr)与相应的钢筋混凝土截面bh按Ⅲa阶段计算

Mu相等。

??max????0.2%,0.45ft??min?f?

y??四、单筋矩形截面正截面受弯承载力

基本计算公式及其适用条件:

五、双筋矩形截面梁受弯承载力的计算 计算公式及其适用条件:

六、T形截面梁受弯承载力的计算

T形截面判别条件:①第一类T形截面,计算中和轴在翼缘内(

x≤hf

fyAs??''1fcbfhf或

M??1fcb''fhf(h0?h'f2);②第二类T形截面,计算中和轴

在肋部(x>hf′),

fyAs??1fcb'fh'f或

M??''h'f1fcbfhf(h0?2)。

第四章 受弯构件斜截面受剪承载力

1.斜截面承载力的一般概念

斜裂缝主要有腹剪斜裂缝和弯剪斜裂缝两类。 剪跨比:剪跨a与梁截面有效高度h。的比值。(剪跨a:计算截面至支座截面或节点边缘的距离)

计算剪跨比 : =a/h。广义剪跨比: =M/Vh。 2、斜截面受剪三种主要破坏形态及其特征

①斜压破坏(??1(箍筋过多或梁腹过薄)):在荷载作用点与支座间的梁腹部出现若干条大体平行的腹剪斜裂缝,随着荷载增加,梁腹部被这些斜裂缝分割成若干个斜向受压的“短柱体”,最后它们沿斜向受压破坏。脆性破坏。由截面限制条件来防止。 ②剪压破坏(1???3(箍筋适量)):弯剪斜裂缝出现后,荷载有较大的增长;随着荷载的增大,出现临界斜裂缝,最后临界斜裂缝上端集中于荷载作用点附近,混凝土被压碎而造成破坏。脆性破坏。由斜截面受剪承载力计算来防止。

③斜拉破坏(??3(且箍筋过少)):斜裂缝一旦出现就迅速延

伸到集中荷载作用点处,使梁沿斜向拉裂成两部分而突然破坏。脆性破坏。由最小配筋率来防止。

承载力大小: 斜压>剪压>斜拉 破坏性质: 斜拉>斜压>剪压 2、斜截面受剪承载力计算

(1)影响斜截面受剪承载力的主要因素:1、剪跨比2、混凝土强度等级3、箍筋的配箍率4、纵向受拉钢筋配筋率5、横截面上的骨料咬合力6、截面尺寸和形状7、弯矩比。

(3)两个基本计算公式;

?1一般公h?(800h式4

VnA0)u?0.7ftbh0?1.25sv1sfyvh0

的独立梁

V1.75u???1.0fbhnAt0?1.0sv1sfyvh0

(4)计算公式的适用范围及条件:

1、截面的最小尺寸(上限值:防止斜压破坏 ) 2、箍筋的最小含量(下限值:防止斜拉破坏) (5)厚板的计算公式:

无腹筋的一般板类受弯构件,其受剪承载力随板厚的增大而降低。截面高度影响系数: 当h0<800mm时,取h0=800mm;当h0>2000mm时,取h0=2000mm。 (6)计算方法

计算截面:①从支座边缘开始的截面;②从弯起钢筋弯起点处开始的斜截面;③箍筋直径或间距改变处的斜截面;④肋宽改变处的斜截面。

3、保证斜截面承载力的构造措施 1.抵抗弯矩图:将各个正截面的Mu值连接起来就构成Mu图。(表示的是构件每一正截面的受弯承载力设计值的大小)

2.纵筋的弯起:弯起点应在该钢筋充分利用截面以外,≥0.5h0;弯终点到支座边或到前一排弯起钢筋弯起点之间的距离,都不应大于箍筋的最大间距。

3

混凝土结构设计原理复习重点(非常好) 期末复习资料汇总

混凝土设计原理1.混凝土结构:以混凝土为主要材料制作的结构。包括:素混凝土结构、钢筋混凝土结构、预应力混凝土结构。钢筋混凝土结构优点:就地取材,节约钢材,耐久、耐火,可模性好,整体性好,刚度大,变形小。缺点:自重大,抗裂性差,性质较脆。2.钢筋塑性性能:伸长率,冷弯性能。伸长率越大,塑性越好。3
推荐度:
点击下载文档文档为doc格式
06ij99570v6b8ve00zsa83uyx967u500vdf
领取福利

微信扫码领取福利

微信扫码分享