1 概述
第三代移动通信(3G)的各种标准和规范已逐步形成,并开始应用,但目前大多数国家运营的仍然是2G或2.5G的移动通信系统。3G系统实际所能提供的速率为384kbps,远低于标称的最高速率2Mbps,难以满足用户13益增长的需求。因此在3G系统还没有大规模投入使用的情况下,国内外移动通信领域的专家已经开始进行4G(或B3G)系统的研究和开发工作。
2 4G移动通信网络
可以从以下几方面来描述第四代移动通信系统:a.新的频段(比如5—8GHz或更高)上的无线通信系统,基于分组数据的高速率传输(50Mbps以上),承载大量的多媒体信息,具有非对称的上下行链路速率等功能;b.“全球统一”(包括卫星部分)的通信系统,基于全新网络体制的系统,能使各类媒体、通信主机及网络之间进行“无缝”链接,使得用户能够自由地在各种网络环境间无缝漫游;c.融合了数字通信、数字音/视颇接收(点播)/和因特网介入的崭新的系统,用户能够自由的选择协议、应用和网络,让应用业务提供商(ASP)及内容提供商(SP)提供独立于操作的业务及内容。
3 3G和4G的比较
由于目前3G采用很多先进性的技术, 将来4G在很大程度上进一步融合3G现有的技术。比如,智能天线,软件无线电,联合检测,功率控制等。虽然4G继承了3G的许多技术,但是在指标和技术方面有诸多区别。
3.1 技术指标方面的对比
3G 提供了高速数据,在图象传输上,其静止传输速率达到2Mbps,高速移动时
1 / 21
的传输速率达到114Kbps,慢速移动时的传输速率达到384kbps, 带宽可以达5MHz以上UMT采用WCDMA技术,利用正教码区分用户,有FDD和TDD两种双工方式。 4G的性能指标是:
a) 数据速率从2Mbps 到100Mpbs;
b) 容量达到第3 代系统的5~10倍,传输质量相当于甚至优于第3代系统。广带局域网应能与宽带综合业务数据网(B-ISDN)和异步传送模式(ATM)兼容,实现广带多媒体通信,形成综合广带通信网;
c) 条件相同时小区覆盖范围等于或大于第3代系统; d) 具有不同速率间的自动切换能力,以保证通信质量; e) 网络的每比特成本要比第3代低。
3.2 技术方面的对比
a) 3G的关键技术是CDMA技术,而4G采用的是OFDM技术。OFDM可以提高频谱利用率,能够克服CDMA在支持高速率数据传输时信号间干扰增大的问题;
b) 在软件无线电方面,4G对3G中的软件无线电技术进行升级,满足4G中无线接入多样化要求,使得3G中无线接入标准不统一的问题得以解决。同时在4G中,实现软切换和硬切换相结合,对3G中的软件无线电基础上通过增加相应的硬件模块,对相应的软件进行升级使他们最终都融合到一起,成为一个统一的标准, 实现各种需求的功能;
c) 3G网络采用的主要是蜂窝组网,4G采用全数字全IP技术,支持分组交换,将WLAN,Bluetooth等局域网融入广域网中。在4G中提高智能天线的的处理速度和效率。在TD-SCDMA 采用智能天线的基础上,对相关的软件和算法加以升级,增加一些接口协议来满足4G的要求;
d) 4G系统也使用了许多新技术,包括超链接(ultra2connectivity)和特定无线网络技术、动态自适应网络技术、智能频谱动态分配技术以及软件无线电技术;
e) 在功率控制上,4G比3G要求更加严格,其目的是为了满足高速通信的要求。不仅频率资源限制移动用户信号的传输速率,而且基站和终端的发射功率也
2 / 21
限制了用户信号的传输速率。在3G中,采用切换技术来减少对其它小区的干扰,提高话音质量,不过在4G中,切换技术的应用更加广阔,并朝着软切换和硬切换相结合的方向发展。
4 4G移动通信的关键技术
4.1 OFDM
OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM 是MCM Multi-Carrier Modulation,多载波调制的一种。其主要原理是:将待传输的高速串行数据经串并变换,变成在子信道上并行传输的低速数据流,再用相互正交的载波进行调制,然后叠加一起发送。接收端用相干载波进行相干接收,再经并串变换恢复为原高速数据。
4.1.1 OFDM原理简介
OFDM技术是一种多载波调制技术,其特点是各副载波相互正交。 设{fm}是一组载波频率,各载波频率的关系为:
{fm}=f0+m/T m=0,1,2,…N-1 (1) 式中,T是单元码的持续时间,f0是发送频率。
作为载波的单元信号组定义为[16]:
式中l的物理意义对应于“帧”(即在第l时刻有m路并行码同时发送)。 其频谱相互交叠。
OFDM是由一系列在频率上等间隔的副载波构成,每个副载波数字符号调制,各载波上的信号功率形式都是相同的,都为sinf/f型,它对应于时域的方波。
3 / 21
Φm(t)满足正交条件
以及
其中符号“*”表示共轭。
当以一组取自有限集的复数{Xm,l}表示的数字信号对φm调制时,则:
此S(t)即为OFDM信号,其中Sl(t)表示第l帧OFDM信号,Xm,l(m=0,1,…,N-1)为一簇信号点,分别在第l帧OFDM的第m个副载波上传输。
在接收端,可通过下式解调出Xm,l
这就是OFDM的基本原理。当传输信道中出现多径传播时,在接收副载波间的正交性将被破坏,使得每个副载波上的前后传输符号间以及各副载波之间发生相互干扰。为解决这个问题,就在每个OFDM传输信号前插入一保护间隔,它是由OFDM信号进行周期扩展而来。只要多径时延不超过保护间隔,副载波间的正交性就不会被破坏。
4.1.2 OFDM技术的优点
OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方面其有很多优势:
(1)在窄带带宽下也能够发出大量的数据。OFDM技术能同时分开至少1000
4 / 21
个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约Flarion工学院以及朗讯工学院等开始使用,在加拿大Wi-LAN工学院也开始使用这项技术。
(2) OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信。
(3) 该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。
(4) OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。
(5) OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。 (6) 可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。
(7) 通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。
(8) OFDM技术抗窄带干扰性很强,因为这些干扰仅仅影响到很小一部分的子信道。
(9) 可以选用基于IFFT/FFT的OFDM实现方法;
(10) 信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。
5 / 21