【中考压轴题专题突破】
二次函数中的定值问题
1.在平面直角坐标系xOy中,已知二次函数y=﹣
的图象经过点A(2,0)和
点B(1,),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.
(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t≤0)的变化规律为y1=﹣2t.设点C是线段OP的中点,作DC⊥l于点D. ①点P运动的过程中,
是否为定值,请说明理由;
②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=1﹣3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=,求t的值.
第1页(共13页)
2.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S. (1)求二次函数y=﹣x2+bx+c的表达式;
(2)若n=0,求S的最大值,并求此时t的值;
(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.
第2页(共13页)
3.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”
(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.
(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y=ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;
(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.
第3页(共13页)