好文档 - 专业文书写作范文服务资料分享网站

功率MOSFET的应用问题分析

天下 分享 时间: 加入收藏 我要投稿 点赞

连接在一起相当于开路:VCES>>VCEO。这样的内部连接,也导致内部的寄生二极管功能,也连接到外部电路。

问题9:关于米勒电容Crss,在你的文档MOSFET的动态参数中,有公式如下:

参考图片,Crss电容是栅极通过氧化层对漏极的电容,对于开关过程,在第2阶段,沟道打开后,Ciss为什么增加了,是什么原因?另外,AON6450规格书上的测试条件是VDS=50V的情况,这个测试的条件基于什么原因?是否可以给出其它条件下的电容值?

回复: Ciss增加的原因是Crss增加,图中,器件导通后,Wdep减小,Crss就增加。对于一个100V的器件,比如:AON6450,由于在米勒平台区,极限的情况VGD将从100V降到10V以内。Crss是一个动态电容,容值随着VDS而变化,而且不是线性关系。

数据表中所采用的测试条件,是行业通常采用的标准,以50%的VDS测试。如果客户有特殊要求,可以提供80%或100%的数据。

问题10:功率MOSFET的SOA曲线如何得到的,可以用来作为设计的安全标准吗?

回复:任何一家公司的SOA曲线上,主要有3部分组成:电阻限制区、几条由脉冲功率限制的电流电压直线和最大电压直线。最大电压值就是数据表中的额定值。几条由脉冲功率限制的电流电压直线,实际上是计算值,就是基于数据表中的瞬态热阻、导通电阻以及最大的允许结温计算得到的,而且都是基于TC=25度,TC代表的是封装裸露铜皮的温度,在实际应用中,TC的温度远高于25度,因此,SOA曲线是不能用来作为设计的验证标准。

问题10:VGS大于VGS(th),MOSFET导通,MOSFET刚进入米勒平台,是否就算达到了饱和?如果是这样,此时停止向G极供电,假定忽略栅极氧化层的漏电,这时VDS会一直维持比较高压降吗?感觉有点不可思议,因为其饱和以后,Rdson已经降了下来。如果说没有饱和,也感觉说不过去,Rdson和VGS有关,达到10V以后,Rdson已经很小了,压降也应该降下来。如果说压降自动会降下来,那不是说米勒平台后期的充电没有什么用?

回复:VGS大于VGS(th)时,MOSFET开始导通,其刚进入米勒平台,MOSFET都工作在放大区,而且器件都没有完全导通,因为,此时MOSFET导通电阻非常大,D极的电压由整个MOSFET承受,因此电流较小,电

流乘上电阻也等于VDS值,也就是D、S极所加的电源电压值。

事实上,MOSFET工作在线性区时,和线性电压调节器,也就是LDO,如LM7805的工作原理相同,如:当输入电压为10V,输出5V,压降就是5V;输入电压12V,输出还是5V,压降是7V,MOSFET相当于调节管,输入电压和输出电压的差值,都由MOSFET来承担。

到了米勒平台区,电流为系统的最大电流,电流不能再增加,那么,VDS的电压开始下降,即使是VDS的电压下降一点点,所产生的电压变化率也非常大,因此,驱动回路的电流,将全部被米勒电容Crss所抽取,此时,就看到了所谓的“米勒平台”,VDS的电压在一定的时间内,维持一个稳定的值,直到VDS完全下降到最小值,VDS的电压变化率为0时,才结束米勒平台区。

问题11:1、请教一个AOS3401的问题:现在使用AOS3401的导通电阻Rdson作为隔离电阻,用来缓冲热插入移动硬盘的瞬间冲击电流,防止瞬间把主机芯电压拉低,电路图如下,5V_USB是插移动硬盘的地方,+5V_Normal来自主机芯电压。将VGS设计在固定的-1.6V左右,此时的Rdson大约在100mΩ左右,插上移动硬盘瞬间的冲击电流由原来的9A下降到了5A左右,冲击电流持续时间80微秒左右,效果很明显,移动硬盘正常工作时电流约300mA。如果将VGS设计在-2.5V左右,Rdson只有几十mΩ,对冲击电流的抑制作用不大。这个电路的设计原则是什么?

回复:VGS=-1.6V时,可以保证MOSFET导通,注意要考虑电阻阻值的分散性,在最差的条件下,如果使用电阻的精度为10%,VGS电压绝对值:1.3+1.6*20%=1.64V,MOSFET仍然可以工作。如果电阻的精度为15%,考虑到MOSFET的VGS(th)电压的分散性,在一定的条件下,如低温,MOSFET有可能不工作。VGS(th)电压是负温度系数,温度越低,其值越大。

驱动电压的稳定值,要结合输入电压最低值,分压电阻值的精度,VGS(th)和VGS(th)的温度系数等最极端的条件下,来选择合适的分阻电阻的分压比,保证系统的设计要求。同样,PCB布板时,S和D都用大的铜皮连接,如果是多层板,在每层都放上相应大小的的铜皮,用多个10-15mil的过孔连接,散热。

2、AO3401的VGS(th)规格书中标的可以到-1.3V,设置VGS=-1.6V,电压绝对值大于-1.3V,是否该MOS正常导通,应该没有问题吧?现在损耗并不是考虑的问题,0.03V的Rdson的压降对系统没有任何影响。原来使用一个0.1欧姆的氧化膜电阻来做隔离的,但是该电阻体积太大,用这个电路的目的就是想替换这个电阻。由于这个电路中,MOSFET是在电视机开机后一直导通的,在MOSFET一直导通的状态下,来插入移动硬盘的,而不是插入移动硬盘后再打开MOS的,所以觉得调节R45/R46/C18的值不能起到降低冲击电流的作用。希望利用MOSFET的恒流区特性来降低冲击电流,如果把VGS调整到-2.5V以上,对冲击电流的限制作用就非常小了,只能从9A降到8A左右,这样的做法对MOS来说会有问题吗?

回复:事实上,下面的电路是利于MOSFET在开通过程中,较长时间工作在线性区(放大区,也就是恒流区),从而控制上电时瞬态大负载,如热插拨移动硬盘,因为硬盘带有较大的容性负载,切入瞬间形成较大的浪涌电流.如果MOSFET已经导通,后面再插入移动硬盘这样的大容性负载,浪涌电流主要由输出端的大电容来提供,因此MOSFET无法限制浪涌电流。

MOSFET工作在线性区时,电阻远大于完全导通的电阻,因此也可以理解为用电阻抑止浪涌电流。通常,这种负载开关电路,设计时,分压电阻是为了防止VGS的最大电压超过额定的最高电压,串联在G极的电阻调节MOSFET的开通速度。在保证要求的开通速度条件下,VGS不能超过最大额定电压时,可以适当提高电阻值,这样,在正常的工作状态下,MOSFET完全导通后,减小产生的静态损耗。

3、在AO3401规格书的第1页有写operation with gate votages as low as 2.5V,是否是要求G极电压必须大于2.5V? VGS必须小于-2.5V?设计VGS=-1.6V有没有问题?如果继续加大VGS到-1V呢?是不是VGS的大小没有关系,只要保证Rdson产生的功耗不要导致MOSFET过热就行,是否正确?

回复:不能那么认为,这句话的含义是:AO3401可以工作在VGS=-2.5V,此时,导通电阻约为120mOhm。如果VGS电压太小,低于阈值电压VGS(th),AO3401可能无法完全开通,无法正常工作。还是建议将VGS设计在-2.5V以上,如-3.5V左右,通过调节(增加)R45/46和C18来降低冲击电流。

问题12:使用如下电路,用CPU的GPIO口直接控制一个MOSFET管,MOSFET作为后端负载的开关,这种应用有什么风险?

回复:检查VCC以及MR34/MR35分压后的电压值VGS,VGS绝对值要比MQ1的VTH高,才能保证MOSFET完全打开,否则后面的系统可能不工作;同时,检查GPIO口的驱动能力,是否满足驱动的要求。如果很小,最好用GPIO口驱动一个三极管的B极,三极管的集电极C下拉MOSFET的G极。

由实际的浪涌电流,再调整MC11值,以及MR34/MR35值。在PCB设计时,MQ1的D,S用大铜皮连接,如果多层板,在多个层放铜皮,用多个过孔,分别进行连接。

问题:想请教一个有关MOSFET的关断时DS电压振荡的问题,在同一个电路上测试了两个不同厂商的30V的MOSFET,得到了关断时不同的DS电压波形,如下图。可以看到器件1的尖峰较高,但是振荡抑制的很

快;器件2的尖峰较低,但是振荡抑制的较慢。因为是在同一块PCB上测量的,所以电路的寄生电感,电阻等参数是不变的,现在只有器件不同。这种尖峰是电路上的寄生电感和MOSFET的电容谐振引起,但是不明白具体是这两个器件哪个参数的差别,会使得这种振荡表现这么不同。是否能够从器件数据的某些参数对比来选择一款实际应用峰值较低,振荡又能快速消除的MOSFET呢?

器件1 器件2

回复:这样的振荡波形,对于一个电源的工程师来说,经常看到,在这里,首先谈一下测量方法的问题: (1)如同测量输出电压的纹波一样,所有工程师都知道,要去除示波器探头的帽子,直接将探头的信号尖端和地线接触被测量位置的两端,减小地线的环路,从而减小空间耦合的干扰信号。

(2)带宽的问题,测量输出电压纹波的时候,通常用20MHZ的带宽,但是,测量MOSFET的VDS电压时候,用多少带宽才是正确的测量方法?事实上,如果用不同的带宽,测量到的尖峰电压的幅值是不同的。

具体原则是:①确定被测量信号的最快上升Tr和下降时间Tf;②计算最高的信号频率:f=0.5/Tr,Tr取测量信号的10%~90%;f=0.4/Tr,Tr取测量信号的20%~80%;③确定所需的测量精确度,然后计算所需的带宽。

所需精确度 20% 10% 3%

在上图波形中,被测量信号最快的下降时间为2ns(10%~90%),判断一个高斯响应示波器在测量被测数字信号时所需的最小带宽:f=0.5/2ns=250MHz。

若要求3%的测量误差:所需示波器带宽=1.9*250MHz=475 MHz;若要求20%的测量误差:所需示波器带宽=1.0*250MHz =250MHz。因此,决定示波器带宽的重要因素是:被测信号的最快上升时间。注意:示波器的系统带宽由示波器带宽和探头带宽共同决定。

VDS的振荡波形由PCB寄生回路电感和MOSFET的寄生电容形成高频谐振而产生的,在寄生电感值一定的条件下,寄生电容越小,振荡的频率越高,幅值也越高,同时,振荡的幅值和回路的初始电流值相关。特别注意的是:寄生电容Coss不是线性的,随着电压的增大而减小,因此,可以的看到波形振荡的频率并不是固定的。

VDS的高频振荡是无法消除的,增加Coss或在D、S极外部并联电容,可以降低振荡的频率和幅值,Snubber电路也是利用这个原理,抑制电压的尖峰。

问题13:功率MOSFET的耐压为什么是正温度系数?温度高,功率MOSFET的耐压高,那是不是表明MOSFET对电压尖峰有更大的裕量,MOSFET更安全?

高斯频响 BW=1.0*f BW=1.3*f BW=1.9*f 最大平坦频响 BW=1.0*f BW=1.2*f BW=1.4*f

回复:随着温度的升高,晶格的热振动加剧,致使载流子运动的平均自由路程缩短。因此,在与原子碰撞前由外加电场加速获得的能量减小,发生碰撞电离的可能性也相应减小。在这种情况下,只有提高反向电压,进一步增强电场,才能发生雪崩击穿,因此雪崩击穿电压随温度升高而提高,具有正的温度系数。

MOSFET耐压的测量基于一定的漏极电流,温度升高时,为了达到同样的测量漏极电流,只有提高电压,表面上看起来,测量的耐压提高了。但是,MOSFET损坏的最终原因是温度,更多时候是局部的过温,导致局部的过热损坏,在整体温度提高的条件下,MOSFET更容易发生单元的热和电流不平衡,从而导致损坏。

问题14:使用下图的电路,进行不同电平信号间的转换,VCC_SIM=5V,SIM_DATA、SIM_CARD_I/O属于I/O双向传输。SIM_DATA为输入信号,可以理解:SIM_DATA为高时,Q7截止,SIM_CARD_I/O接收为5V信号;SIM_DATA为低时,Q7导通,SIM_CARD_I/O接收为低电平信号。当SIM_DATA为输出信号时,如何理解SIM_CARD_I/O输入为低电平信号?

回复:功率MOSFET的电流可以从D到S,也可从S到D,只是从S到D是不可控的,此时,体内寄生的二极管导通。当功率MOSFET作同步整流管时候,通常也是寄生二极管先导通,然后栅极信号驱动MOSFET的导通:沟道导通,用以减小导通损耗。

SIM_DATA为输出信号时,SIM_CARD_I/O为低电平,Q7体内寄生二极管导通,信号SIM_DATA也拉低,接收低电平信号。SIM_CARD_I/O输出高电平5V时,Q7体内寄生二极管截止,信号SIM_DATA上拉到3.3V,接收高电平信号。

问题15:超结型高压功率MOSFET的UIS雪崩能力为什么比平面工艺低? 回复:参考文献,超结型高压功率MOSFET结构工作原理,今日电子:2013.11。

问题16:功率MOSFET的损坏模式有那些?如何判断MOSFET的损坏方式? 回复:参考文献,开关电源中功率MOSFET损坏模式及分析,电子技术应用:2013.3

问题17:功率MOSFET的数据表中dv/dt为什么有二种不同的额定值?如何理解体二极管反向恢复特的dv/dt?

回复:在反激电源中,原边主开关管关断过程中,VDS的波形从0开始增大,因此产生一定的斜率dv/dt,同时产生电压尖峰,就是寄生回路的电感和MOSFET的寄生电容振荡形成的。这个dv/dt会通常通过米勒电容,耦合到栅极,在栅极上产生电压,如果栅极电压大于阈都电压,MOSFET会误导通,产生损坏,因此,要限制MOSFET关断过程中的dv/dt,

另一种情况,就是在LLC,半桥和全桥电路,以及同步BUCK的下管,当下管关断后,下管的寄生二极管先导通续流,然后对应的上桥臂的上管开通,二极管在反向恢复过程中,也会产生dv/dt的问题。通常,二极管反向恢复的dv/dt额定值,远小于MOSFET本身的dv/dt额定值。

通常,在二极管在反向恢复过程中,如果存储的电荷没有完全清除,二极管也就是下管,是不能承受

功率MOSFET的应用问题分析

连接在一起相当于开路:VCES>>VCEO。这样的内部连接,也导致内部的寄生二极管功能,也连接到外部电路。问题9:关于米勒电容Crss,在你的文档MOSFET的动态参数中,有公式如下:参考图片,Crss电容是栅极通过氧化层对漏极的电容,对于开关过程,在第2阶段,沟道打开后,Ciss为什么增加了,是什么原因?另外,AON6450
推荐度:
点击下载文档文档为doc格式
05j0t434kr10e609m87w9sc9l3ppgr019x5
领取福利

微信扫码领取福利

微信扫码分享