第四章 矩阵
?311??11?1??abc??1ac?????????1.设1)A??212?,B??2?10?2)A??cba?,B??1bb?
?123??101??111??1ca?????????计算AB,AB?BA。
?62?2??400??22?2???????00解 1)AB?61 ,BA??410?AB?BA??20? ???434??4?4?2??8?12????????a?b?ca2?b2?c2?2ac?b22)AB??a?b?c?3a?b?c??a?ac?cb?ab?c2c?a2?2ac?b2????a2?b2?c2?BA??a?ac?c2b?b2c?ab?b?
?2a?c2a?b?c?b?bc?cc?ac?a???? AB?BA?(aij)3?3, 其中
a11?b?ac, a12?a2?b2?c2?b?ab?c, a13?b2?2ac?a2?2c a21?c?bc, a22?2ac?2b, a23?a3?b2?c2?ab?b?c a31?3?c2?2a, a32?c?bc, a33?b?ab
2.计算
2?211?532????1)?310? 2)??
??4?2??012????11??cos? 3)?4)???01??sin?n?sin??? cos??n?1??1?????5)?2,3,?1???1?,??1??2,3,?1? 6)?x,??1???1??????a11?y,1??a21?a?31a12a22a32a13??x????a31??y?
?a33????1??1?1?1?1??1?1?1?1??????11?1?1?11?1?1?,?? 7)???1?11?1???1?11?1????1?1?11?????1?1?11??????2n?10?n8)???0?1??? ?00????211?2?744解 1)??310??????943??。
??012????334??5 2)??32??3?2?4?2????48?。
???? 3)采用数学归纳法,可证
?11?n???01????1n??01? ?。
事实上,当n?2时,有
?2?11??01?????12??01? ?,
结论成立。
当n?k?1时,归纳假设结论成立,即
??11?k?1?01?????1k?1??01?
?于是当n?k时,有
?k?11??11?k?1g??11??1k?1??11??01?????01???01?????1?01????01?????0n即证??11?01????1n??成立。
???01?4)采用数学归纳法,可证
??cos??sin??n?cosn??sinn???sin?cos??????sinn?cosn??
?,
事实上,当n?2时,有
??cos??sin??2?cos2??sin2?cos?sin???sin?cos???????2cos?sin?cos2??sin2?? ? ???cos2??sin2???sin2?cos2??,
?结论成立。
当n?k?1时,归纳假设结论成立,即
k?1??,
?cos???sin?于是当n?k时,有
?sin???cos??k?1?cos(k?1)????sin(k?1)??sin(k?1)???
cos(k?1)??,
k?1?cos???sin??sin???cos????cos???sin?k?sin???cos???cos?g??sin??sin???cos??
?cos(k?1)??sin(k?1)???cos??sin?????g?? ?sin(k?1)?cos(k?1)???sin?cos???x??1?x3其中
x2?? x4?,
x1?cos(k?1)?cos??sin(k?1)?sin??cosk? ,
同理可得
x2??sink?, x3?sink?, x4?cosk?,
因而有
n?cos???sin??sin???cosn????cos???sinn??sinn???
cosn??。
?1??1??23?1???????5)?2,3,?1???1??0,??1??2,3,?1????2?31?
??1???2?31???1?????。??6)?x,?a11?y,1??a12?b?1a12a22b2b1??b2? c???x??? ?(a11x?a12y?b1,a12x?a22y?b2,b1x?b2y?c)?y?
?1???22 ?a11x?2a12xy?a22y?2b1x?2b2y?c。
7)注意到
?1?1?1?1??40????11?1?1????04??1?11?1??00???1?1?11???????00这意味着,若令
200??1??00?2?0?2??040???004???000??100? ?010?001??,